∫L|x|dS x² y²=4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 19:06:58
∫L|x|dS x² y²=4
计算∫L(x^2+3y)dx+(y^2-x)dy 其中L为上半圆周y=√(4x-x^2)从O(0,0)到A(4,0)

积分曲线为圆心在(2,0),半径为2的上半圆周,补充曲线L‘:y=0上从(4,0)到(0,0)的一段,这样L+L’构成了闭曲线,可以用格林公式计算.设P=x^2+3y,Q=y^2-x,则Q‘x=-1,

∫L(e^x siny-2y)dx+(e^x cosy-z)dy, L:上半圆周(x-a)^2+y^2=a^2 , y>

利用格林公式设P=e^xsiny-2yQ=e^xcosy-z(这儿不可能是z,是x还是2呢,先作为2来解)Q对x求偏导数=e^xcosy,P对y求偏导数=e^xcosy-2差为2不等于0连接半圆的直径

求曲线积分∫L(x^2+2xy-y^2)dx+(x^2-2xy-y^2)dy,其中L是沿着椭圆x^2/4+y^2/4=1

可以求得原函数U(x,y)=x^3/3+x^2*y-x*y^2-y^3/3+C.分别代入(2,0)跟(-2,0),作差得到结果为-(16/3),如楼主所言.

另询:∫L(x^2+y)dx+(2x-y^2)dy ,L是曲线 x^2+y^2=4x 的上半弧段

x^2+y^2=4x==>(x-2)^2+y^2=4若L是逆时针的话∫L(x^2+y)dx+(2x-y^2)dy=∫∫D[(2)-(1)]dxdy=∫∫Ddxdy=4π若L是顺时针==>∫L(x^2+

已知直线l:2x-y-1=0和圆C:x²+y²-2y-1=0相交于A,B两点,求弦长AB

解题思路:【1】把圆C的方程化为标准形式,确定圆心坐标及半径。【2】应用弦长公式求出AB.解题过程:

已知直线L过点P(4,3),圆C;x²+y²=25,则直线L与圆的位置关系是

解题思路:判断点P和圆的关系,发现点P在圆上,从而做出判断.解题过程:解因为圆心到点的距离,而圆的半径也为5,所以过的直线和圆有两种关系,相切或相交..

已知直线l:x-3y+4=0,l关于直线y=X对称的直线方程为

设点(x',y')在直线l上,对称后的直线上点为(x,y)则(y-y')/(x-x')=(-1)/(1/3)=-3中点坐标((x'+x)/2,(y'+y)/2)在直线l上,则(x'+x)/2-3(y'

问解几 直线族方程 L:(2x+y-3)+k(x-2y+4)=0

1、定点就是直线2x+y-3=0与直线x-2y+4=0的交点(2/5,11/5)2、直线族方程是:(k+2)x+(1-2k)y+(4k-3)=0,原点到直线的距离是1,则:|4k-3|/√[(k+2)

计算∫L(1+xe^2y)dx+(x^2e^2y-y^2)dy,其中L是从点O(0,0)经圆周(x-2)^2+y^2=4

因为(1+xe^2y)对y求偏导数得:2xe^2y;(x^2e^2y-y^2)对x求偏导数得:2xe^2y,故积分与路径无关.选取路径:y=0,0《x《4,代入得:∫L(1+xe^2y)dx+(x^2

∫L(x^2+2xy)dx+(x^2+y^4)dy,L是y=sin(π/2)从(0,0)到(1,1)

是求曲线积分吗?取O(0,0),B(1,0),A(1,1)三点,连结BA,设P=x^2+2xy,Q=x^2+y^4,∂P/∂y=2x,∂Q/∂x=2x,

已知曲线L:x的平方+y的平方-2x-4y+m=0

1、(x-1)²+(y-2)²=-m+1+4圆则r²=-m+1+4>0m

计算∫L(x^2-2y)dx+(x+y^2siny)dy,其中L是圆周x^2+y^2=2x的正向曲线,

∵L圆周x^2+y^2=2x的半径是1∴L圆周面积∫∫dxdy=π*1^2=π(S表示L圆周x^2+y^2=2x区域)故∫L(x^2-2y)dx+(x+y^2siny)dy=∫∫[α(x+y^2sin

高数格林公式问题.计算I = ∫L [(x+4y)dy+(x-y)dx] / (x^2+4*y^2) 其中L为单位圆 x

取充分小的正数e,在单位圆内做椭圆x^2+4y^2=e^2,方向为逆时针方向,记为S+S包围区域为D,其长轴为e,短轴为e/2,面积为pi*e^2/2.原积分=∫LPdx+Qdy=∫L并S-Pdx+Q

已知椭圆4x^2+y^2=1及直线l:y=x+m.

联立代换,韦达定理表示线段长度,详见各类资料

曲线积分怎么求求∫L 〖(5x^4+3xy^2-y^3 )dx+(3x^2 y-3xy^2+y^2 )dy L:y=x^

y跟x是成函数关系吧那么第一个就是求导了两边同时对x求导令dy/dx为a则6a/6y=3y+3xaa=3y^2/1-3xy第二问就是再导多一次令d^2y/dx^2=bby-a^2/y^2=3a+3a+

已知x=y+3,求代数式:l/4(x-y)的平方 -0.3(x-y)+0.75(x-y)的平方+3/10(x-y)-2(

由题意知:x-y=31/4(x-y)²-0.3(x-y)+0.75(x-y)²+3/10(x-y)-2(x-y+7)=(1/4+0.75)(x-y)²+(3/10-0.3

已知l:x-y+b=0曲线C:y=根号(4-x^2)

曲线C:y=√(4-x²),变形得y²+x²=4∵y>0,∴曲线C是圆心在原点半径为2的上半圆而y=x+b是斜率为1的直线,∴作图可知该直线与上半圆相切,此时b=2√2或

lx-2l+ly-二分之一l=o求4x+2y的值

由Ix-2I+Iy-1/2I=0,得x-2=0,y-1/2=0,即x=2,y=1/2;故4x+2y=4*2+2*1/2=9.

设L为取正向的圆周x²+y²=4,则曲线积分∫L(x²+y)dx+(x-y²)d

用格林公式将一个封闭曲线上的线积分化为在此封闭区域内的面积分∫L(x²+y)dx+(x-y²)dy=(在曲线L围成的封闭区域上积分)∫∫{[∂(x-y²)/&