∫tanxdx ∫secxdx ∫cscxdx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:40:05
∫xarcsinxdx=∫arcsinxd(x²/2)=(1/2)x²arcsinx-(1/2)∫x²/√(1-x²)dx,x=sinz=(1/2)x²
万能代换?t=tan(x/2),1/(1+sinx)dx=1/(1+2t/(1+t^2))*2t/(1+t^2)dt=2t/(1+t)^2dt=(2/(1+t)-2/(1+t)^2)dt=2ln(1+
∵∫arctanxx2(1+x2)dx=∫arctanx(1x2−11+x2)dx=∫arctanxx2dx−∫arctanx1+x2dx=−∫arctanxd(1x)−∫arctanxd(arcta
∫xsinxdx=-xcosx+sinx+C
∫积分符号:读成对.的积分
不能用初等函数表示,那用series表示吧计算有点复杂,不排除有错误的.ddhan001的做法简直是误导.如果是lny = ∫ xlnx dx的话,则直接对右边
如果x和y之间是独立的,它们的范围都是常数例如0≤x≤2,0≤y≤4则∫∫dxdy=∫(0,2)dx∫(0,4)dy=[∫(0,2)dx]*[∫(0,4)dy]这两个定积分可以分开独立计算.但如果x和
其实∫secxdx=ln|secx+tanx|+C不知道你得到是不是这个结果对于如何得到的∫d(x+π/2)/sin(x+π/2)==ln|csc(x+π/2)-cot(x+π/2)|+C因为∫csc
你把tanx化为sinx/cosx再把sinxdx化为d(cosx)就有积分号右边:1/cosxd(cosx)利用公式可得你的结论
[∫
∫secxdx=∫secx(secx+tanx)/(secx+tanx)dx=∫((secx)^2+secxtanx)/(secx+tanx)dx=∫1/(secx+tanx)d(secx+tanx)
等于sinxdx再问:具体过程再答:直接等于啊再问:不定积分再问:再答:满意答案再问:求解题过程再问:图片已发再答:再答:再答:图片发不出再答:嘿嘿再答:嘿嘿,能聊几句吗?昨天我回答你的试题,是因为我
∫tanxdx=∫sinx/cosxdx=-∫1/cosxd(cosx)=-ln|cosx|+C
:∫7-∫5____∫5-∫3
是一个/打重了再问:没打错我看了很多人的搜了很多答案都这样的再答:反正就是一个除号。认为是一个除号就一目了然的理清思绪了。不是吗。形式不重要,真理是最重要的。再问:那谢谢了!再答:也可能是为了避免被认
∫secxdx=∫(1/cosx)dx=∫[cosx/(cosx)^2]dx=∫[1/1-(sinx)^2]d(sinx)=(1/2)∫[1/(1-sinx)+1/(1+sinx)]d(sinx)=(
因为√x(√x+2√y)=√y(6√x+5√y),所以x+2√(xy)=6√(xy)+5y,所以x-4√(xy)-5y=0,所以(√x+√y)(√x-5√y)=0,所以√x+√y=0或√x-5√y=0
怎么了,正确的呀再问:要考试了,复习,正确吗再答:嗯
数列1/1*2+1/2*3+…+1/n(n+1)的sn=1-1/2+1/2-1/3+----+1/n-1/(n+1)=1-1/(n+1)1-1/(n+1)中的1-是怎么得出的?1/n-的n取1吗,你不