∫x3 (x-1)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 02:16:24
=∫x^2dx+∫1/x^4dx=1/3x^3-1/3*1/x^3+C=1/3(x^3-1/*x^3)+C
∫x^4/(1+x)]dx=∫[(x^4-1)+1]/(1+x)]dx=∫(x^4-1)/(1+x)+∫1/(1+x)dx=∫(x²+1)(x²-1)/(1+x)dx+∫1/(1+
∫(1-x)^2/x^3dx=∫(1-2x-x^2)/x^3dx=∫(x^(-3)-2x^(-2)+x^(-1))dx=1/(-3+1)x^(-3+1)-1/(-2+1)x^(-2+1)+ln|x|+
=1/2∫1/(1+x^2)d(1+x^2)=1/2ln(1+x^2)+c
用分步积分∫x*ln(x-1)dx=1/2∫xln(x-1)dx^2=1/2x^2ln(x-1)-1/2∫x^2dln(x-1)=1/2x^2ln(x-1)-1/2∫x^2/(x-1)dx=1/2x^
1、原式=∫(sinx^2)*(cosx^2)dsinx=∫sin^2*(1-sinx^2)dsinx=∫(sin^2-sinx^4)dsinx=∫sinx^2dsinx-∫sinx^4dsinx=1
上下乘以X^2再积分再问:具体点再答:x^2/(x^3(1+x^3))dx=1/3*(1/(x^3(1+x^3)))dx^3=1/3(1/(t(1+t)))dt=1/3(1/t-1/(1+t))dt=
(1+x+x^2+x^3)^2-x^3设y=1+x+x^2,则(x^3-1)=(x-1)*(1+x+x^2)=(x-1)*y,原式=(y+x^3)^2-x^3=y^2-2*y*x^3+x^6-x^3=
∫1/(x²+x+1)dx=∫1/[(x+1/2)²+3/4]d(x+1/2)=(2/✔3)arctan[(2x+1)/✔3]+c公式∫1/(x
对复杂部分求导,然后分部积分法,具体看图!
∫(-1,1)xe^(x|x|)dx=∫(-1,0)xe^(-x^2)dx+∫(0,1)xe^x^2dx=-1/2∫(-1,0)e^(-x^2)d(-x^2)+1/2∫(0,1)e^x^2dx^2=1
令x=tant则dx=sec^2tdt于是∫dx/[x(x^2+1)]=∫sec^2t/[tantsec^2t]dt=∫dt/tant=∫(cost/sint)dt=∫(1/sint)dsint=ln
两题的做法都很类似:由于分子的次数比分母大,可以先做一个长除法将分式变为真分式.然后再用部分分式将真分式再拆解为最简形式.第一题:第二题:这么一大串其实很容易做错的,多检查几次就好,上面过程已经验算过
∫x(1+lnx)dx=∫(1+lnx)d(x²/2)=(1/2)x²(1+lnx)-(1/2)∫x²d(1+lnx)=x²/2+(1/2)x²lnx
这两个是一样的上面一个常数是C下面一个是1/3+C考虑到C的任意性,本质是一样的关键是看含有x的项要一样
∫lnx/x^3dx=∫lnxd(-1/(2x^2))=-lnx/(2x^2)+(1/2)∫1/x^2d(lnx)=-lnx/(2x^2)+(1/2)∫1/x^3dx=-lnx/(2x^2)+(1/2