∫x²dx∫e-y²dy

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 12:08:36
∫x²dx∫e-y²dy
dy/dx,y=(1+x+x^2)e^x

dy/dx=(1+x+x²)'*e^x+(1+x+x²)*(e^x)'=(1+2x)e^x+(1+x+x²)e^x=(2+3x+x²)e^x

求二次积分 ∫(0-1)dx∫(x-1)e^(-y²)dy

把积分区域D画图,改换积分次序:∫(0~1)dx∫(x~1)e^(-y^2)dy=∫(0~1)dy∫(0~y)e^(-y^2)dx=∫(0~1)ye^(-y^2)dy被积函数的原函数是-1/2e^(-

计算二重积分:∫[0,1]dx∫[0,x^½]e^(-y²/2)dy

原式=∫dy∫e^(-y²/2)dx(作积分顺序变换)=∫(1-y²)e^(-y²/2)dy=∫e^(-y²/2)dy-∫y²e^(-y²/

计算∫(0,1)dx∫(x,1)e^(y^2)dy=

题目应该是e^(-y^2)交换积分次序:=∫(0,1)dy∫(0,y)e^(-y^2)dx=∫(0,1)ye^(-y^2)dy=1/2*∫(0,1)e^(-y^2)dy^2=1/2*(1-1/e)

求解微分方程.∫(dy/dx)=e^(x+y)

(dy/dx)=e^(x+y)(dy/dx)=e^x*e^y分离变量dy/e^y=e^xdx两边积分-e^(-y)=e^x+C1则-y=ln(C-e^x)整理得y=-ln(C-e^x)

∫(0到y^2)e^tdt=∫(0到x)lncostdt,求dy/dx

两边对x求到得:e^(y^2)*2yy'=lncosx,故:y'=(lncosx)/e^(y^2)*2y

计算积分∫(0,2)dx∫(x,2)e^(-y²)dy

把积分区域D画图,改换积分次序:∫(0~1)dx∫(x~1)e^(-y^2)dy=∫(0~1)dy∫(0~y)e^(-y^2)dx=∫(0~1)ye^(-y^2)dy被积函数的原函数是-1/2e^(-

计算二重积分 ∫dy∫e^(-x^2)dx

∫dy∫e^(-x^2)dx=-∫dy∫e^(-x^2)dx=-∫dx∫e^(-x^2)dy=-∫e^(-x^2)dx∫dy=-∫xe^(-x^2)dx=1/2e^(-x^2)=1/2(e^(-1)-

计算二重积分∫[1,3]dx∫[x-1,2]e^( y^2) dy

∫(x=1→3)dx∫(y=x-1→2)e^(y²)dy交换积分次序:dydx→dxdyx=1到x=3,y=x-1到y=2y=0到y=2,x=1到x=y+1=∫(y=0→2)e^(y

∫(0,1)dx∫(0,x)e^(-y)dy怎么解?

首先∫e^(-y)dy=-e^(-y)代入上下限x和0=1-e^(-x)所以原积分=∫(0,1)1-e^(-x)dx=x+e^(-x)代入上下限1和0=1+e^(-1)-1=e^(-1)

求二重积分∫(0,2)dx∫(x,2)e^(-y^2)dy

交换积分次序:∫(0,2)dx∫(x,2)e^(-y²)dy=∫(0,2)dy∫(0,y)e^(-y²)dx=∫(0,2)ye^(-y²)dy=(1/2)∫(0,2)e^

∫(x^2-y)dx+(x+siny)dy

首先对于这样的第二类线性积分,参数方程很重要x=2(cost)^2y=2sint*costπ/4≤t≤π/2然后就用曲线积分公式你可以用这个思路再问:用格林公式怎么做

求二重积分∫(1/2—1)dy∫(y—√y)e^(y/x)dx

不能先对x积分,需交换积分次序:D:y≤x≤√y,1/2≤y≤1分成两个区域:D1:1/2≤y≤x,1/2≤x≤√2/2D2:x²≤y≤x,√2/2≤x≤1I=∫∫D1e^(y/x)dydx

∫( e^x sin y- y )dx + (e^x cos y - 1)dy,是(2,0)的半圆周y=√2x-x^2

利用格林公式:∮cP(x,y)dx+Q(x,y)dy=∫∫D(dQ/dx-dP/dy)dxdy首先需要构造封闭曲线.∫(x沿半圆周y=√2x-x^2从2积到0)(e^xsiny-y)dx+(e^xco