∫√(8-x∧2)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:59:25
取x=sint+1(-pi/2
1、令x=sinθ,dx=cosθdθ∫dx/[1+√(1-x²)]=∫cosθ/(1+cosθ)dθ=∫(cosθ+1-1)/(1+cosθ)dθ=∫dθ-∫1/(1+cosθ)·(1-c
令t=√x,则x=t²,原积分=∫2tdt/cos²t=2∫tdtant=2(ttant-∫tantdt);∫tantdt=∫sintdt/cost=-∫1/costdcost=-
解答这个积分的困难在于有根式√(4-x^2),但是我们可以利用三角公式sin²t+cos²t=1来化去根式.设x=2sint,-π/2<t<π/2,那么√(4-x^2)=2cost
令t²=2x+1,2tdt=2dx∫e^√(2x+1)dx=∫e^t*tdt=∫tde^t=te^t-∫e^tdt=te^t-e^t+C=(t-1)e^t+C=[√(2x+1)-1]e^√(
1/4*Ln(2x+1)+1/(4(2x+1))√(x²+4)再问:没看懂上面是两道题再答:知道啊,不是有两答案嘛就是换元法,两个属于同一类。将分母中的1+2x和x²+4换元,再进
1.原式=∫x^(3/2)dx=2/5x^(5/2)+C2.原式=∫x^(5/2)dx=2/7x^(7/2)+C3.原式=∫x^(-2)dx=-1/x+C4.原式=6*x^4/4+C=3/2x^4+C
这个是考你的换元能力来的,~~~~不明白的就追问吧~~~~希望楼主采纳!O(∩_∩)O谢谢
答:∫ xln(x∧2+1)dx=(1/2) ∫ ln(x^2+1) d(x^2+1)=(1/2)*(x^2+1)*[ln(x^2+1)-1]+C再问:���˵
∫(x^2+√x)dx=(1/3)x^3+2x√x/3+C
你看看对吗?刚写的时候把常数忘写了再问:恩,对的,我系数乘错了。第一题是:∫sinx/(cosx)^4dx,这题你看看1/(3(cosx)^3)+c对,还是这个对1/(3(cosx)^2)+c再答:第
A:原式=-cos+∞+cos0发散B:原式=-1/2e^(-∞)+1/2e^0=1/2收敛C:原式=ln+∞-ln1发散D:原式=2√+∞-2√1发散所以答案为B
令x+1=3tanθ,则dx=3sec²θdθ∫1/√[(x+1)²+9]dx=∫1/√(9tan²θ+9)•(3sec²θdθ)=∫1/(3sec
1+sinx=1+cos(π/2-x)=2cos²(π/4-x/2)1/(x²+4x-5)=1/[(x+5)(x-1)]=[1/(x-1)-1/(x+5)]·1/6(3x+1)/(
令x=tanu,则dx=sec²tdt∫1/[x√(1+x²)]dx=∫1/[tanu·√(1+tan²x)]·sec²tdt=∫cscudu=-ln|cscu
∫dx/[x^2.√x]=∫x^(-5/2)dx=-(2/3)x^(-3/2)+C
∫dx/√[1-e^(-2x)]lete^(-x)=siny-e^(-x)dx=cosydy∫dx/√[1-e^(-2x)]=∫-cscydy=-ln|cscy-coty|+C=-ln|e^x-(e^
令x=3sint,则dx=3costdt.t=arcsin(x/3).sin2t=2sintcost∫√(9-x^2)dx=∫[√(9-9sin²t)]3(cost)dt=∫9cos