∫∫|x2-y2-4|dxdy x2+y2=4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:44:39
∫∫|x2-y2-4|dxdy x2+y2=4
求二重积分∫∫√(x2+y2)dxdy其中积分区域{(x,y)|x2+y2

用极坐标来解吧,令x=r*cosθ,y=r*sinθ那么显然√(x²+y²)=r,由x²+y²≤2x可以得到r²≤2r*cosθ即r≤2cosθ故r的

已知:(x2+y2+1)2-4=0,则x2+y2=______.

∵(x2+y2+1)2-4=0,∴(x2+y2+1)2=4,∵x2+y2+1>0,∴x2+y2+1=2,∴x2+y2=1.故答案为:1.

二重积分~两题两题∫∫(e^x2)dxdy,D由y=x,y=x^3所围在第一象限∫∫e^-y2(即系e的-y^2次方),

y=x与y=x^3在第一象限的交点为(1,1)该积分区域既是X-型的,又是Y-型的X-型:∫0到1∫x^3到x(e^x2)dydx=∫0到1(e^x2)(x-x^3)dx=1/2*[(2-x^2)*e

1.已知X2+Y2-4X-6Y+13=0,求Y2-X2的值

1.已知X2+Y2-4X-6Y+13=0,求Y2-X2的值(x-2)²+(y-3)²=0x=2,y=3y²-x²=3²-2²=52.如果我们

二重积分~两题~1∫∫e^-y2(即系e的-y^2次方),D由X=1,Y=1,X=Y所围成2 ∫∫(根号X)dxdy,D

1∫∫e^-y2(即系e的-y^2次方),D由X=1,Y=1,X=Y所围成X=1,Y=1,X=Y不能围成区域,请楼主再检查一下.2∫∫(根号X)dxdy,D={(x,y)x^2+y^2≤x}∫∫(根号

计算I=∫∫1/(x2+y2+z2)dS,S是抛物面z=x2+y2与平面z=1所围立体的外表面

dS=√(1+4x^2+4y^2)dxdy,投影:x^2+y^2《1I=∫∫1/(x^2+y^2+(x^2+y^2)^2)*√(1+4x^2+4y^2)dxdy+∫∫1/(x^2+y^2+1)*dxd

计算∫∫D|cos(x+y)|dxdy,D:0

记O(0,0),A(π/2,0),B(π/2,π/2),C(0,π/2).则积分域D:为正方形OABC,连接AC,则在D1:△OAC内,x+y

(2x2-3xy+4y2)+(x2+2xy-3y2)化简(要有过程)

原式=(2x²-3xy+4y²)+(x²+2xy-3y²)=(2x²+x²)+(-3xy+2xy)+(4y²-3y²)=

解一个二元二次方程x2-4xy+3y2=0x2=10-y2

x2-4xy+3y2=0因式分解(x-3y)(x-y)=0所以x=3y或者x=y带入第二个式子得到两组解x=3,y=1或者x=y=根号下5

计算二重积分,∫∫4(x*2+y*2)dxdy,)其中D:x*2+y*2

直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π

4y2-(x2+y)+(x2-4y2),其中x=-28 y=

解题思路:先根据去括号法则去括号,再合并同类项,最后代入数值进行计算。解题过程:

利用极坐标求积分∫∫(x2+y2)dxdy 其中D是由直线y=x,y=x+a,y=a及y=3a(a>0)所围成的区域

这道题用极坐标变换便不好做,因为积分范围真的是不好确定.  应该是用积分变化.令y=y,和z=y-x,这时有范围a再问:这个方法懂的。是正确答案,谢谢啦只是老师要求用极坐标做啊……再答:极坐标的不好写

∫∫(4-x-y)dxdy积分区域D为x^2+y^2

x=rcost,y=rsint,代入方程得r^2

∫∫(x+y)dxdy,D:x^2+y^2

x^2+y^2=x+y化成标准式(x-1/2)^2+(y-1/2)^2=1/2x=1/2+rcosαy=1/2+rsinαα∈[0,2π]r∈[0,√2/2]∫∫(x+y)dxdy=∫∫(1+rcos

已知方程x2 +y2+4x-2y-4=0,求x2 +y2的最大值

原式可化简为(x+2)^2+(y-1)^2=9这是一个以(-2,1)为半径的圆所以x^2+y^2的最大值就是圆上一点到原点的最大距离就是圆心到原点的距离加上半径等于3+根号5