∫上3下0 x 根号1 xdx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:14:07
∫上3下0 x 根号1 xdx
不定积分∫根号下tanx+1/cos^2xdx

∫√(tanx+1)/cos²xdx=∫√(tanx+1)*sec²xdx=∫√(tanx+1)d(tanx)=∫√(tanx+1)d(tanx+1)=(2/3)(tanx+1)^

求定积分上限3下限0根号1+x分之xdx

原式=∫(0→3)(x+1-1)/(x+1)dx=∫(0→3)dx-∫(0→3)dx/(x+1)=x|(0→3)-∫(0→3)d(x+1)/(x+1)=x|(0→3)-ln|x+1||(0→3)=3-

求定积分∫(上限根号2乘a,下限0) xdx/根号下(3a2-x2)

如图:再答:再答:呃,a不用加绝对值,因为已经知道a>0了,不好意思...

求定积分∫(上2下1)根号下(x^2-1)/xdx

由题意可得:先求∫√(x^2-1)/xdx的不定积分令√(x^2-1)=t,又上下限均大于0所以x=√(t^2+1),dx=t/√(t^2+1)dt所以∫√(x^2-1)/xdx=∫t/√(t^2+1

不定积分问题:1)∫arctan1/xdx 2)∫arctan√xdx (dx前为根号X)

用分步积分法就可以做出来了∫arctan1/xdx=xarctan(1/x)-∫xdarctan1/x=xarctan(1/x)-∫x/[1+(1/x)^2]*(-1/x^2)dx=xarctan(1

求积分∫上3下0 x/根号下x+1 dx

由题意可得:∫[x/√(x+1)]dx=∫[(x+1-1)/√(x+1)]dx=∫√(x+1)dx-∫1/(√(x+1)dx=∫√(x+1)d(x+1)-∫1/(√(x+1)d(x+1)=2[(x+1

求定积分1倒4e^根号下x/根号下xdx .

如果题目是:∫(1,4)[e^(根号x)/根号x]dx则可以:原式=∫(1,4)[2*e^(根号x)]d(根号x)=2*e^(根号x)|(1,4)=2*e^2-2*e=2e²-2e

∫根号xdx=,

答案是三分之二乘以x的二分之三次方+c

求定积分∫上1下0xe^xdx的值

补充楼上∫[0,1]xe^xdx=∫[0,1]xde^x=xe^x|[0,1]-∫[0,1]e^xdx=xe^x[0,1]-e^x|[0,1]=e-(e-1)=1

求∫x^2根号xdx不定积分

∫x^2√xdx=∫x^(5/2)dx=2/7*x^(7/2)+C再问:∫x^(5/2)dx里的5/2怎么得出来的?再答:√x=x^(1/2)

∫(0,+∞)xe^-xdx和∫(1,-1)dx/根号(1-x∧2),

第一题;∫xe^xdx=∫xd(e^x)=x(e^x)-∫(e^x)dx=x(e^x)-e^x+C符号太繁琐,带入符号和数字即可.第二题用三角代换,x=tant,t属于(-PI/4,PI/4)

求不定积分∫e^根号下xdx,

∫e^√xdx=2∫√xe^√xd√x=2∫√xde^(√x)=2√xe^(√x)-2∫e^√xd√x=2√xe^(√x)-2e^(√x)+C

定积分(0到1)e^根号下xdx=

√x=tx=t²dx=2tdt∫(0-->1)2te^tdt=2∫(0-->1)tde^t=2te^t-2∫e^tdt=2te^t-2e^t(0-->1)=2e-2e-(-2)=2

∫(6^x-2^x)3^xdx

再答:再答:第一个错了再问:不好意思,我把问题打错了,中间是除不是乘。您再看一眼,求指导!再答:

微积分:∫根号X内根号xdx 怎么算

∫根号X内根号xdx=∫x^(1/2+1/4)dx=∫x^3/4dx=4/7x^(7/4)+c