∫上限π 2,下限0,sinψcos3ψdψ

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:48:29
∫上限π 2,下限0,sinψcos3ψdψ
∫(上限1,下限0)dx∫(上限1,下限x)x^2*siny^2dy

积分区域为一个三角形:0≤x≤1,x≤y≤1变换积分区域,把它表示为0≤y≤1,0≤x≤y则∫(0,1)dx∫(x,1)x²siny²dy=∫(0,1)dy∫(0,y)x²

定积分 绝对值sin x 上限 2π 下限 0

原式=∫(0,π)sinxdx+∫(π,2π)(-sinx)dx=-cosx(0,π)+cos(π,2π)=-(-1-1)+(1-(-1))=4

求定积分∫(上限为π/2.下限为0)|1/2-sin x| dx

把区间分为(0,π/6),(π/6,π/2)∫(0,π/2)|(1/2)-sinx|dx=∫(0,π/6)[(1/2)-sinx]dx+∫(π/6,π/2)[sinx-(1/2)]dx=[(x/2)+

求定积分∫上限为π/2下限为0 sin^3/(1+cosx)dx

∫(sin[x])^3/(1+cos[x])dx=∫-(sin[x])^2/(1+cos[x])d(cos[x])=∫((cos[x])^2-1)/(1+cos[x])d(cos[x])=∫(cos[

∫√(sin^3 x-sin^5 x)dx 上限π 下限0 求定积分

sin³x-sin^5x=sin³x(1-sin²x)=sin³xcos²x当00√(sin³xcos²x)=sinxcosx√s

定积分上限π/2下限0sin^6x/(sin^6x+cos^6x)dx

令x=π/2-t,原积分=∫(0,π/2)cos^6t/sin^6t+cos^6tdt,这两个积分相加得π/2,所以原积分=π/4

计算积分 ∫(上限1,下限0)dx∫(上限1,下限x)siny^2dy

画图看二次积分的区域D={(x,y)|0≤x≤1,x≤y≤1}={(x,y)|0≤y≤1,0≤x≤y}于是∫(上限1,下限0)dx∫(上限1,下限x)siny^2dy=∫∫(D)siny^2dxdy=

∫(上限л/2下限0)sin^2(x/2)dx

∫(上限л/2下限0)sin^2(x/2)dx∫(上限л/2下限0)(1-cosx)/2dx=(x-sinx)/2(上限л/2下限0)=(л/2-1)/2=л/4-1/2

定积分问题:下限0上限π ∫ (sinx)的m次方 dx为什么等于2 ∫下限0上限π/2 (sinx)次方

∫[0→π](sinx)^mdx=∫[0→π/2](sinx)^mdx+∫[π/2→π](sinx)^mdx后一部分做变量替换,令x=π-u,则dx=-du,u:π/2→0=∫[0→π/2](sinx

定积分∫(上限π/3,下限π/4)x/(sin^2x)dx

原式=∫x*csc^2xdx(下限π/4,上限π/3)=-(1/2)*∫xd(cot2x)(下限π/4,上限π/3)=-(1/2)*xcot2x+(1/2)*∫cot2xdx(下限π/4,上限π/3)

cosx绝对值 上限是π下限是0 定积分等于上限π/2下限0 cosxdx-上限π下限π/2dsinx 为什么上限要变成

去掉绝对值后进行积分:|cosx|=cosxx在[0,π/2]|cosx|=-cosxx在[π/2,π]

求定积分∫上限π/2,下限0 4sin^2xcos^2xdx,

这题方法有很多,你可以把cos^2x换成1-sin^2x4sin^2xcos^2x=4(sin^2x-sin^4x)sin^2x和sin^4x积分是有公式的.但是一般人估计也记不得,所以方法二:为了方

高数定积分急求解.证明∫(上限π/2,下限0)sinx∧3/(sinx+cosx)dx= ∫(上限π/2,下限0)cos

图倒了.囧.简单的说x=pie/2-t 代入就行再答:相等的。这个过程中都是等量变换。x=f(t)代入,这个过程不仅是原积分函数在变g(x)=g(f(t)),其实积分变量dx也会换成df(t

计算积分上限是π 下限是0 ∫[sin(2n-1)x]/sinx dx ,其中n为正整数

利用等式:sin(2k+1)x-sin(2k-1)x=2sinxcos2kx,1

∫上限是0,下限是x f(x)dx=sin^2x 求f(∏/4)=?

∫(0/x)f(x)dx=sin^2x-∫(x/0)f(x)dx=sin^2x∫(x/0)f(x)dx=-sin^2x两边同时求导可得到:f(x)=-2sinxcosx=-sin2xf(∏/4)=-s

求定积分∫(1-sin∧3θ)dθ上限π 下限0

∫(0→π)(1-sin³θ)dθ=∫(0→π)dθ-∫(0→π)(1-cos²θ)d(-cosθ)=π+(cosθ-1/3*cos³θ)|(0→π)=π+[-1-1/3

设 f(x)=∫(上限x下限0)cost/(2π-t)dt,求∫(上限2π下限0)f(x)dx?

∫(上限2π下限0)f(x)dx=∫(上限2π下限0)costdt=0