∫根号Xlnxdx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:04:13
∫(0→1)xe^xdx=∫(0→1)xd(e^x)=xe^x-∫(0→1)e^xdx=[(1)e^(1)-(0)e^(0)]-e^x=e-[e^(1)-e^(0)]=e-e+1=1∫(0→e)xln
令√x=tx=t^2dx=2tdt原式=∫2tdt/(1+t)=2∫[1-1/(1+t)]dt=2t-2ln(1+t)+C
x*dy/dx=y*lnydy/(ylny)=dx/x两边求积分ln|lny|=ln|x|+C1lny=x*(正负e^C1)y=e^[x*(正负e^C1)]=e^Cx其中C=正负e^C1,C取任意实数
∫1/根号x*sec^2(1-根号x)dx=2∫sec^2(1-根号x)d(√x)=-2∫sec^2(1-根号x)d(1-√x)=-2tan(1-√x)+c
∫dx/√(4x-x^2)=∫dx/√([4-(x-2)^2]=arcsin[(x-2)/2]+C
令t=√x∫1/(1+2√x)dx=∫1/(1+2t)dt^2=∫2t/(1+2t)dt=∫1-1/(1+2t)dt=∫dt-∫1/(1+2t)dt=t+1/2ln(1+2t)+C=√x+1/2ln(
解令√x=t则t²=x,dx=2tdt∴∫dx/(1+√x)=∫2tdt/(t+1)=2∫[(t+1)-1]/(t+1)dt=2∫1-1/(t+1)dt=2t-2ln|t+1|+C=2√x-
解题思路:利用放缩,根号下N的平方加N的值介于根号下N的平方(N)和根号下(N+1)的平方之间,就是在N和N+1之间,整数部分就是N解题过程:正确答案是:(1)2014(2)m利用放缩,根号下N的平方
∫lnx/√xdx=2∫lnxd(√x)分部积分=2√xlnx-2∫√x/xdx=2√xlnx-2∫1/√xdx=2√xlnx-4√x+C希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮
∫√[1+√x]/x^[3/4]dxLetu=x,dx=4udu=∫√[1+u]/u*[4u]du=4∫√[1+u]duLetu=tanz,du=seczdz=4∫√[1+tanz][seczdz]=
设t=3次根号(x+1),x=t^3-1dx=3t^2dt原式=∫1/t*3t^2dt=∫3tdt=3/2t^2+C=3/2*3次根号(x+1)^2+C
∫dx/x根号(1+lnx)=∫1/根号(1+lnx)d(1+lnx)=2根号(1+lnx)+c再问:=∫1/根号(1+lnx)d(1+lnx)为什么=2根号(1+lnx)+c再答:∫dx/x根号(1
∫1/[1+(√3x)]dx=1/√3·∫1/[1+(√3x)]d(√3x)=1/√3·∫1/[1+(√3x)]d(1+√3x)=1/√3·ln|1+√3x|+C
答案是三分之二乘以x的二分之三次方+c
解题思路:根号解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.php?
∫x^2√xdx=∫x^(5/2)dx=2/7*x^(7/2)+C再问:∫x^(5/2)dx里的5/2怎么得出来的?再答:√x=x^(1/2)
令x=√2sint(t属于[-π/2,π/2])原式=∫(-π/2→π/2)2cos^2(t)dt=∫(-π/2→π/2)(cos2t+1)dt=1/2sin2t|(-π/2→π/2)+t|(-π/2
∫cos根号t/根号tdt令根号t=u,则:t=u^2dt=2udu=积分:2ucosu/udu=积分:2cosudu=2sinu+C=2sin根号(t)+C(C为常数)对于有根号(t)的形式一般会想
∫根号X内根号xdx=∫x^(1/2+1/4)dx=∫x^3/4dx=4/7x^(7/4)+c