∫正无穷到0 xe的-x次方dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:45:47
∫x^4*e^(-x^2)dx=2∫x^4*e^(-x^2)dx(从0到+∞积分)=2∫t^2e^(-t)*1/[2√t]dt(设t=x^2)=∫t^(5/2-1)e^(-t)dt=Γ(5/2)=3/
∫xe^xdx=∫xde^x=x*e^x-∫e^xdx=x*e^x-e^x+C=(x-1)*e^x+C所以定积分=(π/2-1)*e^(π/2)-(-1)*e^0=(π/2-1)*e^(π/2)+1
^^你知道正态分布吧f(x)=[1/√(2pi)]*exp(-x^2)EX=0DX=1EX^2=DX+(EX)^2=1=∫x^2f(x)dx从负无穷到正无穷所以∫x^2*[1/√(2pi)]*exp(
反常积分,发散再问:谢谢!!!那这个要怎么证它发散啊???再答:原函数是(1/2)ln(1+x^2),在+∞的值是﹢∞,不是有限值,故广义积分发散。
a>0.a>=1的时候,要看x趋于无穷的情况,此时x^(a-1)比起e^x,都是无穷小,而e^x*e^(-x^2)显然是收敛的.a再问:但是答案是a>1/2tangram_guid_135799679
反常(广义)积分xe^(-x^2)范围是0到正无穷=∫-1/2e^(-x^2)d(-x^2)=-1/2e^(-x^2)(下标O,上标+无穷大)=-1/2(1/e)^x^2(下标0,上标+无穷大)=0+
由积分中值定理,存在0
原式=∫(0到1)xde^x=xe^x-∫(0到1)e^xdx=(xe^x-e^x)(0到1)=(e-e)-(0-1)=1
∫xe的x次方dx的积分=∫xde^x=xe^x-∫e^xdx=xe^x-e^x+c再问:^是个什么意思啊再答:e^x即为e的x次方
∫xe^(-x)dx=lim∫xe^(-x)dx=lim[-xe^(-x)-e^(-x)]|=lim[-ue^(-u)-e^(-u)+1]=lim[-u/e^u-1/e^u]+1=1收敛
采用分部积分:∫(-∞,0)xe^xdx=∫(-∞,0)xde^x=xe^x(-∞,0)-∫(-∞,0)e^xdx=(xe^x-e^x)(-∞,0)=-1
∫xe^(-2x)dx=(-½)e^(-2x)x-∫(-½)e^(-2x)dx=(-½)e^(-2x)x-¼∫e^(-2x)d(-2x)=(-½)e^
∫(2→4)xe^(-x²)dx=∫(2→4)e^(-x²)d(x²/2)、凑微分=(1/2)∫(2→4)e^(-x²)d(x²)、把常数项提出=(1
∫(0→1)xe^(-x)dx=-∫(0→1)xd[e^(-x)]=-[xe^(-x)]+∫(0→1)e^(-x)dx=-1/e-[e^(-x)]=-1/e-(1/e-1)=1-2/e
∫xe^(x^2)dx=(1/2)∫e^(x^2)d(x^2)=(1/2)e^(x^2)+C(C为常数)代入上下限,可知原积分=(e-1)/2
使用伽玛函数和余元公式比较方便Γ(x)=∫t^(x-1)/e^tdt积分限为0到正无穷大取x=3/2得Γ(1/2)=∫t^(-1/2)*e^(-t)dt=∫1/x*e^(-x^2)d(x^2)=2∫e
用分部积分化为一个特殊的定积分可以求出其值.
∫dx/x²=-1/x+Cx→+∞,则-1/x→0x→0,则-1/x→∞即x→0时极限不存在所以这个广义积分不存在