∬x根号ydxdy

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:14:36
∬x根号ydxdy
用极坐标计算二重积分计算∫∫x/ydxdy其中D是由曲线x^2+y^2=2ay(x>=0,a为正实数)与y轴所围成的闭区

积分区域为半个圆域,于是考虑用极坐标.令x=rcost,y=rsint,于是积分域为

二重积分arctanx/ydxdy.D:0

化为极坐标下的积分原积分=∫(0->1)∫(0->pi/4)arctan(cosθ/sinθ)rdrdθ=∫(0->1)∫(0->pi/4)arctan(cosθ/sinθ)rdrdθ=∫(0->1)

计算二重积分∫∫(D)xe^ydxdy,其中D为直线y=0,y=lnx,x=2围成的平面区域

直线y=0,y=lnx,x=2交点(1.0)(2,0)(2,ln2)∫∫(D)xe^ydxdy=∫(1,2)xdx∫(0,lnx)e^ydy=∫(1,2)x(x-1)dx=(x^3/3-x^2)|(1

根号(x根号x(根号x))求导

y=根号(x根号x(根号x))=x^(1/2)*x^(1/4)*x^(1/8)=x^(1/2+1/4+1/8)=x^(7/8)y'=7/8*x^(-1/8)

计算二重积分∫D∫x平方ydxdy,其中区域D是由x=o,y=o与x平方+y平方=1所围成的位于第一象限内的图形

本题用极坐标∫∫x²ydxdy=∫∫r²(cosθ)²rsinθrdrdθ=∫[0-->π/2](cosθ)²sinθdθ∫[0-->1]r^4dr=-∫[0-

计算∫∫x/ydxdy其中D是由曲线x^2+y^2=2ay(x>=0,a为正实数)与y轴所围成的闭区域

∫∫x/ydxdy=∫[0,2a](1/y)dy∫[0,√(2ay-y^2)]xdx注:∫[a,b]表示从a到b的积分.而∫[0,√(2ay-y^2)]xdx=x^2/2|[0,√(2ay-y^2)]

高数方面的习题计算二重积分∫∫ydxdy,其中D是由圆周x的平方+y的平方等于2x所围成的闭区域我想请问一下为什么这道题

被积函数y关于自变量y是奇函数,而积分区域是关于x轴对称的.根据二重积分被积函数的奇偶性和积分区域的对称性,这个积分显然是0.

高数方面的问题计算二重积分∫∫ydxdy,其中D是由圆周x的平方+y的平方等于2x所围成的闭区域 我想请问一下为什么这道

不用算就是0.积分区域关于x轴是对称的,被积函数y关于x轴是奇函数,即f(x,-y)=-y=-f(x,y),因此积分值必是0.

根号X根号 咋算啊

4根号五X根号二=4根号(5X2)=4根号10

x+根号x求导

仅供参考

计算二重积分∫∫(下面有个D)E的X+Ydxdy,其中D为4≤X+Y≤9 所示区域

原式=∫∫e^p*pdpdθ=∫(0,2π)dθ∫(2,3)e^ppdp=2π*1/2e^(p)|(2,3)=π(e^9-e^4)

求二重积分∫∫x²ydxdy.其中D为y=x,y=0,x=1围成的区域.答案是1/6.

二重积分∫(0)(1)x²∫(0)(x)ydydx=∫(0)(1)x²*1/2(x²-0)dx=1/2∫(0)(1)x^4dx=1/2*1/5*x^5l(0)(1)=1/

求二重积分∫∫Dsiny/ydxdy,其中D由y=x^(1/2)和y=^x围成.

曲线y=√x与直线y=x的交点为(0,0)和(1,1)于是积分区域D={(x,y)|y²≤x≤y,0≤y≤1}从而原式=∫[0,1]siny/ydy∫[y²,y]1dx=∫[0,1

计算二重积分I=∫∫ydxdy,其中D是由x轴,y轴与曲线根号(x/a)+根号(y/b)=1所围成的

好做.再答:再问:方程的图像是怎么样的?怎么确定x是0到a?

求二重积分∫∫x√ydxdy,D为y=√x,y=x^2

再问:能画个图吗,我们老师要求画图啊再答:

求二重积分∫x√ydxdy,D:y^2=x,y=x^2所围成的区域

原式=∫xdx∫√ydy(自己作图分析)=(2/3)∫x(x^(3/4)-x³)dx=(2/3)∫(x^(7/4)-x^4)dx=(2/3)(4/11-1/5)=6/55.

计算∫∫(D)x^2ydxdy,其中D是由曲线xy=1,y=√x,x=2围成的平面区域

可以X型或Y型方面计算将二重积分化为普通定积分计算即可若是X型,先计算对y的定积分,后对x若是Y型,先积分对x的定积分,后对y若是Y型的话需要分段,因为积分区间中有两条曲线的交接.

计算二重积分∫∫ydxdy,其中D是由直线x=-2,y=0,y=2及曲线x=-√根号(2y-y^2)所围成的区域.

化成二次积分计算.经济数学团队帮你解答.请及时评价.谢谢!

关于极坐标 重积分1.一道计算2重积分的题目,(x^2+y^2)^1/2+ydxdy的积分,答案是这样的:(x^2+y^

1.第一个(x^2+y^2)^1/2+ydxdy答案的意思应该是把和的积分拆开吧分为两部分(x^2+y^2)^1/2dxdy这个用极坐标积了ydxdy这个应该大家都会.2.直接带进去不就是吗x=pco