∯(x y z)dxdz (x-y-z)dxdz (y z-x)dydz二重积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:53:16
∯(x y z)dxdz (x-y-z)dxdz (y z-x)dydz二重积分
x平方(x+y+z)+xyz过程

原式=x(x²+xy+xz+yz)=x[x(x+y)+z(x+y)]=x(x+y)(x+z(

因式分解(Y+Z)(X+Z)+(X+Y)+XYZ

(X+Y)(X+Z)(Y+Z)+XYZ=(X2+XY+XZ+YZ)(Y+Z)+XYZ=(X2Y+XY2+XYZ+Y2Z+X2Z+XYZ+XZ2+YZ2)+XYZ=(X2Y+X2Z+XYZ)+(Y2Z+

已知x+y-z/z=x-y+z/y=-x+y+z/x,且xyz不等于0,求分式[(x+y)(x+z)(y+z)]/xyz

(x+y-z)/z=(y+z-x)/x=(z+x-y)/y[x+y]/z-1=[y+z]/x-1=[z+x]/y-1[x+y]/z=[y+z]/x=[z+x]/y设[x+y]/z=[y+z]/x=[z

先化简再求值3xyz+2(x^2y+y^2z-xyz)-xyz+2z^2x x=1 y= -1 z=2

3xyz+2(x^2y+y^2z-xyz)-xyz+2z^2x原式=3xyz+2(x²y+y²z+z²x)-3xyz=2(x²y+y²z+z²

因式分解:(y+z)(x+z)(x+y)+xyz

(X+Y)(X+Z)(Y+Z)+XYZ=(X2+XY+XZ+YZ)(Y+Z)+XYZ=(X2Y+XY2+XYZ+Y2Z+X2Z+XYZ+XZ2+YZ2)+XYZ=(X2Y+X2Z+XYZ)+(Y2Z+

已知x+y+z=a 求:xyz的最大值.

由基本不等式:3√(xyz)≤(x+y+z)/3(当且仅当x=y=z时,取等号)所以:(xyz)≤[(x+y+z)/3]^3(xyz)≤[a/3]^3=a^3/27所以,当x=y=z时,xyz有最大值

x+y+z=6 xyz=20

这题要数形结合,3维立体空间,x+y+z=6是一个平面,xyz=20也是一个个曲面.它们相交得到两条曲线.即这题无穷多的解.可以说这题没有你要的答案,因为答案就是这两条曲线上所有的点,而这些点就是用(

因式分解 (x+y+z)^2+yz(y+z)+xyz

=(x+y+z)^2+yz(y+z+x)=(x+y+z)(x+y+z+yz)

若三个有理数X Y Z满足xyz﹥0

XYZ>0,则X.Y.Z中全正上式为3X.Y.Z中一正两负为-1

(2x^3-xyz)-2(x^3-y^3+xyz)+(xyz-2y^3),其中x=-1,y=-2,z=-3.

原式=2x^3-xyz-2x^3+2y^3-2xyz+xyz-2y^3=-2xyz=-2×(-1)×(-2)×(-3)=12

x2 (x+y+z+xyz)因式分解

因式分解分为以下四种情况:提取公因式法,乘法公式法,分组分解法,十字相乘法.此题不符合任一形式,所以不能再分解.

1、x³+x²y-x²z-xyz

x³+x²y-x²z-xyz=x²(x+y)-xz(x+y)=(x²-xz)(x+y)=x(x-z)(x+y)9(x²-y²)-(

XYZ-XY-XZ+X-YZ+Y+Z-1

XYZ-XY-XZ+X-YZ+Y+Z-1XYZ,XY提取公因式XY;XZ,X提取公因式X;YZ,Y提取公因式Y=XY(Z-1)-X(Z-1)-Y(Z-1)+(Z-1)提取公因式(Z-1);=(Z-1)

已知xyz=231,问x+y+z 等于多少

这题目xyz难道没有约束条件?如果x,y,z都是正整数的话,由于231正约数为3,7,11所以x+y+z=3+7+11=21如果x,y,y只是整数,就需要考虑正负问题.可以为-3+7-11=-7,-3

化简求值:(2x³-xyz)-2(x³-y³+xyz)+(xyz-2y³),x=

(2x³-xyz)-2(x³-y³+xyz)+(xyz-2y³)=2x³-xyz-2x³+2y³-2xyz+xyz-2y³

已知:A=2x^3-xyz,B=y^3-z^3+xyz,C=-x^3+2y^2-xyz,且(x+1)^2+|y-1|+|

(x+1)^2+|y-1|+|z|=0(x+1)^2=0x+1=0x=-1y-1=0y=1z=0A=2x^3-xyz=2*(-1)^3-0=-2B=y^3-z^3+xyz=1^3-0+0=1C=-x^

化简求值(2x^3-xyz)-2(x^3-y^3+xyz)+(xyz-2y^3)=?

(2x^3-xyz)-2(x^3-y^3+xyz)+(xyz-2y^3)=2x^3-xyz-2x^3+2y^3-2xyz+xyz-2y^3=-2xyz

因式分解:(x+y)(y+z)(z+x)+xyz

看就不几个小时你的问题就over了,我一个初中生就班门弄斧一下吧.该式为轮换式,当x+y=-z时原式=0,故有因式(x+y+z),再用多项式除法易知另一项,所以原式=(x+y+z)(xy+yz+zx)