△abc内接于圆o ab是圆o的直径,角acb的平方线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:52:26
△abc内接于圆o ab是圆o的直径,角acb的平方线
如图,△ABC是圆O的内接三角形,I是△ABC的内心,连接AI并延长交BC于点E,交圆O于点D.有能力的试试~

②∵∠BAD=∠EBD,∠D=∠D∴△BAD∽△EBD∴AD/BD=BD/ED∴x/2=2/y∴y=4/x∵BD≤AD≤2R∴2≤x≤6即y=4/x(2≤x≤6)③∵AE=3,即x-y=3联立y=4/

已知:如图,△ABC内接于圆O,弦AD与BC垂直,AE是圆O的直径.求证:∠BAE=∠CAD

证明:∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠C+∠CAD=90∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD注:明白了就可以了,别加分,免

如图,△ABC是圆O的内接三角形,∠C=∠OAB,OA=8cm,求AB的长.

 因为AB弧所对的圆心角为∠AOB,圆周角为∠C所以∠AOB=2∠C因为OA=OB,所以∠OAB=∠OBA因为∠OAB=∠C所以∠AOB=2∠OAB=2∠OBA在△OAB中,由内角和定理,得

如图,三角形ABC内接于圆O,AE是圆O的直径,AD垂直BC于点D,角BAE于角CAD相等吗?

相等∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD

如图,△ABC内接于圆O,AE是圆O的直径,AD⊥BC于点D.∠BAE与∠CAD相等吗

∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠C+∠CAD=90∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD

锐角三角形ABC内接于圆O,AD是圆O的直径,且AD=6,若∠ABC=CAD求AC长

连接CD.所以∠ABC=∠ADC(同弧所对的圆周角相等)∠ABC=CAD,所以∠ADC=CAD又因为AD是圆的直径,所以∠ACD=90°(直径对应的圆周角是直角)所以△ACD为等腰直角三角形,因为AD

如图 AE是圆O的直径,△ABC内接于圆,AD⊥BC于D试说明∠1=∠2

∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD即角1=角2

如图所示,△ABC内接于圆O,点D在OC的延长线上,sinB

解题思路:利用圆的切线的判定定理求证。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/includ

AC*BC=AE*AD 三角形ABC内接于圆O,AE是圆O的直径,AD是三角形ABC中BC边上的高

分析:求线段的比,可以考虑用相似三角形对应边成比例来求;首先寻找相似三角形△AEC与△CBD,然后根据相关判定条件寻找解答即可.证明:连接EC,∴∠B=∠E.∵AE是⊙O的直径,∴∠ACE=90°.∵

△ABC内接于圆O,AB是圆O的直径,点D在圆O上,过点C的切线交AD延长线于于E且AB⊥CE,连接CD,

且AE⊥CE(疑似),按这个来做证明:1)因为AB是直径,所以∠BAC+∠B=90,因为AE⊥CE所以∠CAE+∠ECA=90,因为EC与圆相切所以∠ECA=∠B(弦切角定理)所以∠CAE=∠BAC所

已知三角形ABC内接于圆O,BC是圆O的直径,AD是三角形ABC的高,OE平行AC,OE交AB于E.

证明:∵OE∥AC∴△BOE∽△BCA∴OB/BC=BE/AB∴BE=AB*OB/BC∵OB是半径,BC是直径∴BC=2OB∴BE=AB*OB/2OB=AB/2∴BE=AE又∵∠BAC是直径所对圆周角

(2013•湖南模拟)如图所示,已知△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,

(1)证明:∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC∵AB是圆O的直径,∴BC⊥AC∵DC∩AC=C,∴BC⊥平面ADC.∵DE∥BC,

如图所示,△ABC内接于圆O,AD⊥BC于点D,∠BAD=∠CAO,求证AE是圆O的直径

∵∠DAO+∠OAC+∠C=90°同弧所对圆周叫相等∴∠C=∠E又∵,∠BAD=∠CAO∴∠BAD+∠DAO+∠E=90°∴∠ABE=90°∴AE为圆O的直径

如图所示,△ABC内接于圆O,AD为△ABC的高,AM平分∠ABC

证明:(1)延长AO交圆于E,连接BE.∵AE是直径∴角ABE=90°∵∠ABE=∠ADC=90°∠E=∠C∴△ABE∽△ACD∴AB/AE=AD/AC∵AE=2AO∴AB*AC=2AD*AO(2)由

如图△ABC内接于圆O,AB是圆O的直径,角CBD=角ABC判断直线AD与圆O的位置关系

应该是∠CAD=∠ABC吧证明:∵AB是圆的直径∴∠C=90°∠B+∠CAB=90°又∠CAD=∠B∴∠CAD+∠CAB=90°∠DAB=90°即OA⊥ADOA是半径∴AD与圆O相切

已知三角形ABC内接于圆O,最长边AB是圆O的内接正六边形的一边,BC是圆O内接正八边形的一边,那么

1内接正24边形,内接正六边形圆心角为60度,对应AB弦,C点在AB劣弧内,BC对应正8边形的边,圆心角是45度,余下15度,360/15=24,即应是正24边形的边再问:为什么剩下15度再答:60-

圆几何图形题,(1)△ABC内接于圆O,AC=2,∠ABC=45°,则圆O的半径(2),△ABC内接于⊙O,∠B=30°

2.延长ao交圆与d点连接cd、co角acd为90度(直径所对应的圆周角为90度)角adc为30度(同意段弧线所对应的圆周角相等)ac=ao=co=2三角形aco为等边三角形交coa为60度刚没看到你