△ABC内接于圆O,AB为圆O直径,角ABC的平分线交AC与点F
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 10:40:16
OD垂直于AB,O为圆心,则AD=DB,OE垂直于AC,则AE=EC,所以DE为三角形ABC的中位线所以BC=2DE=2*4=8
(1)证明:∵AB=AC,∴∠ABC=∠C.∵∠C=∠D,∴∠ABC=∠D.又∵∠BAE=∠DAB,∴△ABE∽△ADB,(3分)∴ABAD=AEAB,∴AB2=AD•AE=(AE+ED)•AE=(2
主要步骤:由AB为直径,AC=BC,可知△ABC是等腰RT△,BC⊥AC,又PA⊥面ABC,则PA⊥BC,即BC⊥面PAC,故∠BPC为直线PB与面PAC所形成角.AB=2√2,PA=AB=2√2,P
相切.连接OD,可以证明OD垂直于CD.所以相切.
连接CO,并延长交圆于D点,连接AD和AO.得出CD为圆的直径,∠OAC=∠OCA,∠B=∠ADC因为CD为直径,所以∠ADC+∠OCA=90°.又因为∠B=∠CAE,∠B=∠ADC,∠OAC=∠OC
1.正_____8___边形的边.2.半径长是____1____3.B的坐标(8,0)(-6,0)4.面积0.25
连AD∠CAD=∠CBD=∠ABD∠ADB=90所以有三角形ABD相似于三角形AFDAB/AF=AD/DF=10/7.5=4/3tan∠ABF=tan∠FAD=3/4
因为角aeb=角acb因为ae直径AD为BC上的高所以角aeb=角aec=角acb所以三角形abe和adc相似所以AB/AE=AD/AC得AB·AC=AE·AD
利用圆周角的概念及相似三角形来证,证法如下.在⊙O中,∵⊙A的半径AC=AD,∴弧AC=弧AD,圆周角∠ACD=∠ADC=∠ABC.在△ACG和△ABC中,∠CAG=∠BAC以及∠ACG=∠ABC,于
(1)证明:∵AB是⊙O的直径∴∠ADB=∠ACB=90°∵DE⊥AB∴∠DEA=90°∴∠ADE=∠ABD(都是∠DAE的余角)∵∠DAC=∠DBC(同弧所对的圆周角相等)∠DBC=∠ABD(BD平
图呢?再问:自己画啊!再答:你说如图。。。再问:不懂就别答了。哼再答:-.-可证:PD=PA,PD=PF。所以PA=PF=15/4又可证:△FDA和△ADB相似所以:AD/DB=AF/AB即:tan∠
(1)∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;(2)∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠D
且AE⊥CE(疑似),按这个来做证明:1)因为AB是直径,所以∠BAC+∠B=90,因为AE⊥CE所以∠CAE+∠ECA=90,因为EC与圆相切所以∠ECA=∠B(弦切角定理)所以∠CAE=∠BAC所
(1)证明:∵AB为直径,∴∠ACB=∠ADB=90°∵BD平分∠ABC∴∠CBF=∠FBA∵∠DAF+∠AFD=90°∠CBF+∠BFC=90°∠AFD=∠BFC(对顶角相等)∴∠DAF=∠CBF=
证明:∵OE∥AC∴△BOE∽△BCA∴OB/BC=BE/AB∴BE=AB*OB/BC∵OB是半径,BC是直径∴BC=2OB∴BE=AB*OB/2OB=AB/2∴BE=AE又∵∠BAC是直径所对圆周角
解∵∠BOC=120°∴∠BAC=60°(同弧所对的圆周角等于圆心角的一半)∵AB=AC∴△ABC为等边三角形∵BD是直径∴∠BAD=90°附:对于正△ABC,圆心O既是内心,又是外心∴BD平分∠AB
(1)证明:∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC∵AB是圆O的直径,∴BC⊥AC∵DC∩AC=C,∴BC⊥平面ADC.∵DE∥BC,
证明:(1)延长AO交圆于E,连接BE.∵AE是直径∴角ABE=90°∵∠ABE=∠ADC=90°∠E=∠C∴△ABE∽△ACD∴AB/AE=AD/AC∵AE=2AO∴AB*AC=2AD*AO(2)由
(1)证明:∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE.∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC.∵AB是圆O的直径,∴BC⊥AC,且DC∩AC=C.∴BC⊥平面ADC.∵DE∥