△ABC内接于圆O,AB为圆O直径,角ABC的平分线交AC与点F

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 10:40:16
△ABC内接于圆O,AB为圆O直径,角ABC的平分线交AC与点F
如图,△ABC为圆O的内接三角形,O为圆心,OD垂直AB于D点,OE⊥AC于E点,若DE=4,求BC的长

OD垂直于AB,O为圆心,则AD=DB,OE垂直于AC,则AE=EC,所以DE为三角形ABC的中位线所以BC=2DE=2*4=8

如图,△ABC为圆O的内接三角形,BD为⊙O的直径,AB=AC,AD交BC于E,AE=2,ED=4.

(1)证明:∵AB=AC,∴∠ABC=∠C.∵∠C=∠D,∴∠ABC=∠D.又∵∠BAE=∠DAB,∴△ABE∽△ADB,(3分)∴ABAD=AEAB,∴AB2=AD•AE=(AE+ED)•AE=(2

三角形ABC内接于圆O,其中AB为圆O的直径,PA垂直于平面ABC,AC=BC=2,PA=AB,求直线PB和平面PAC所

主要步骤:由AB为直径,AC=BC,可知△ABC是等腰RT△,BC⊥AC,又PA⊥面ABC,则PA⊥BC,即BC⊥面PAC,故∠BPC为直线PB与面PAC所形成角.AB=2√2,PA=AB=2√2,P

已知,如图,△ABC内接于园O,AB为非直径的弦,∠CAE=∠B,求证:AE与圆O相切于点A

连接CO,并延长交圆于D点,连接AD和AO.得出CD为圆的直径,∠OAC=∠OCA,∠B=∠ADC因为CD为直径,所以∠ADC+∠OCA=90°.又因为∠B=∠CAE,∠B=∠ADC,∠OAC=∠OC

如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D,DE⊥AB于点E且交AC于点P

连AD∠CAD=∠CBD=∠ABD∠ADB=90所以有三角形ABD相似于三角形AFDAB/AF=AD/DF=10/7.5=4/3tan∠ABF=tan∠FAD=3/4

如图,已知△ABC内接于圆O,AE为直径,AD为BC上的高.求证:AB·AC=AE·AD

因为角aeb=角acb因为ae直径AD为BC上的高所以角aeb=角aec=角acb所以三角形abe和adc相似所以AB/AE=AD/AC得AB·AC=AE·AD

如图,圆O与圆A相交于C,D两点,A,O分别为两圆圆心,三角形ABC内接于圆O,弦CD交AB于G,交AO于F.求证AC的

利用圆周角的概念及相似三角形来证,证法如下.在⊙O中,∵⊙A的半径AC=AD,∴弧AC=弧AD,圆周角∠ACD=∠ADC=∠ABC.在△ACG和△ABC中,∠CAG=∠BAC以及∠ACG=∠ABC,于

已知,如图.三角形ABc内接于圆o,AB为直径.角CBA的平分线交Ac于点F.,交圆o于点D,DE⊥AB(1):求证,P

(1)证明:∵AB是⊙O的直径∴∠ADB=∠ACB=90°∵DE⊥AB∴∠DEA=90°∴∠ADE=∠ABD(都是∠DAE的余角)∵∠DAC=∠DBC(同弧所对的圆周角相等)∠DBC=∠ABD(BD平

已知:如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D

图呢?再问:自己画啊!再答:你说如图。。。再问:不懂就别答了。哼再答:-.-可证:PD=PA,PD=PF。所以PA=PF=15/4又可证:△FDA和△ADB相似所以:AD/DB=AF/AB即:tan∠

已知:如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D,DE⊥AB于点E且交AC于点

(1)∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;(2)∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠D

△ABC内接于圆O,AB是圆O的直径,点D在圆O上,过点C的切线交AD延长线于于E且AB⊥CE,连接CD,

且AE⊥CE(疑似),按这个来做证明:1)因为AB是直径,所以∠BAC+∠B=90,因为AE⊥CE所以∠CAE+∠ECA=90,因为EC与圆相切所以∠ECA=∠B(弦切角定理)所以∠CAE=∠BAC所

已知:如图,△ABC内接于圆O,AB为直径,∠CBA的角平分线交AC于点F,交圆O于点D,DE⊥AB于E,且交AC于P,

(1)证明:∵AB为直径,∴∠ACB=∠ADB=90°∵BD平分∠ABC∴∠CBF=∠FBA∵∠DAF+∠AFD=90°∠CBF+∠BFC=90°∠AFD=∠BFC(对顶角相等)∴∠DAF=∠CBF=

已知三角形ABC内接于圆O,BC是圆O的直径,AD是三角形ABC的高,OE平行AC,OE交AB于E.

证明:∵OE∥AC∴△BOE∽△BCA∴OB/BC=BE/AB∴BE=AB*OB/BC∵OB是半径,BC是直径∴BC=2OB∴BE=AB*OB/2OB=AB/2∴BE=AE又∵∠BAC是直径所对圆周角

.请帮个忙如图所示,已知△ABC内接于圆O,AB=AC,∠BAC=120°,延长BO交圆O于点D.(1)求△ABC为等边

解∵∠BOC=120°∴∠BAC=60°(同弧所对的圆周角等于圆心角的一半)∵AB=AC∴△ABC为等边三角形∵BD是直径∴∠BAD=90°附:对于正△ABC,圆心O既是内心,又是外心∴BD平分∠AB

(2013•湖南模拟)如图所示,已知△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,

(1)证明:∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC∵AB是圆O的直径,∴BC⊥AC∵DC∩AC=C,∴BC⊥平面ADC.∵DE∥BC,

如图所示,△ABC内接于圆O,AD为△ABC的高,AM平分∠ABC

证明:(1)延长AO交圆于E,连接BE.∵AE是直径∴角ABE=90°∵∠ABE=∠ADC=90°∠E=∠C∴△ABE∽△ACD∴AB/AE=AD/AC∵AE=2AO∴AB*AC=2AD*AO(2)由

(2014•汕头二模)如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,AB=2

(1)证明:∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE.∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC.∵AB是圆O的直径,∴BC⊥AC,且DC∩AC=C.∴BC⊥平面ADC.∵DE∥