△ABC内接于圆心O,AB是圆心O的直径
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:02:39
OD垂直于AB,O为圆心,则AD=DB,OE垂直于AC,则AE=EC,所以DE为三角形ABC的中位线所以BC=2DE=2*4=8
1、以O为圆心的圆经过点A,交AB于点F,与BC相切于点E.即BC是圆o的切线,所以OE⊥BC又,AB=AC,点D是BC的中点,所以AD⊥BC所以AD//OE2、∠B=30°,则∠BOE=60°又,O
(1)设AH垂直BC于点H,则AH是BC的垂直平分线,所以由OB=OC可知O在AH上又OH垂直BC,BC平行PA,所以OH垂直PA,A又是与圆的交点所以A一定是切点,PA是切线(2)利用△ABC就能求
:(1)连接OD,则OD⊥AC,∴∠ODC=∠OBC=90°,∵OC=OC,OD=OB,∴△ODC≌△OBC,∴∠DOC=∠BOC;∵OD=OB,∴∠ODE=∠OED,∵∠DOB=∠ODE+∠OED,
证明:作辅助线DO,因为∠B=90°,以O为圆心OB为半径的圆与AB交于AB于点E,与AB切于点D.,所以∠CDO=90°,又因为OD=DB,OC为公共边,所以三角形DOC全等于三角形OBC,所以∠D
且AE⊥CE(疑似),按这个来做证明:1)因为AB是直径,所以∠BAC+∠B=90,因为AE⊥CE所以∠CAE+∠ECA=90,因为EC与圆相切所以∠ECA=∠B(弦切角定理)所以∠CAE=∠BAC所
证明:∵OE∥AC∴△BOE∽△BCA∴OB/BC=BE/AB∴BE=AB*OB/BC∵OB是半径,BC是直径∴BC=2OB∴BE=AB*OB/2OB=AB/2∴BE=AE又∵∠BAC是直径所对圆周角
先证△FCE≌△BED∴BD=FC=3根号2然后连接半径OCEC=½OC所以OC=6根号2=OD设ED为XOE=6根号2-X然后在Rt三角形0CE中用勾股定理算BC
因为OD⊥AB于D,OE⊥AC于E,OE、OD为弦,所以D为AB中点,E为AC中点,所以DE为三角形ABC中位线所以BC=2DE=16
题目缺少条件,如图,圆O2可以在O1O2连线上任意移动,且因为半径的不同,均可以保证经过AB两点所以,两圆圆心O1O2之间的距离是不确定的!
1个用45度角可以证,第二个OH=1再问:请问,是怎么证明第二问的,能给个提示吗再答:延长CB与AE相交然后利用等边直角三角形可以求,不懂可以再问我哈
设半径是x根据直角三角形ado列出勾股方程(x+1)^2=x^2+2^2解得x=1.5这样AB=4,AC=5,CD=CB=3
(1)⊙O的直径的长;AD^2=AE*AB,AB=4.⊙O的直径BE=AB-AE=3.(2)求BC的长;△ADO∽△ABC,OD/AD=BC/AB,BC=3.(3)求sin∠DBA的值△ADE∽△AB
连接OD则OD垂直ADOD=OE=ROA=1+ROD^2+AD^2=OA^2得:R^2+4=(1+R)^2R=3/2圆O的直径=2R=32.AB=AE+2R=4连结OC因为OD垂直AC则DC=AC-A
(1)证明:∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC∵AB是圆O的直径,∴BC⊥AC∵DC∩AC=C,∴BC⊥平面ADC.∵DE∥BC,
这位同学你的题目表的有些小问题,我现在重新叙述一遍题干,你看看是不是和你要表达的意思一样:△ABC内接于圆O,AB是圆O的直径,点D在圆O上,圆O过C点的切线交AD的延长线于点E,且AE垂直于此切线,
本题中应该漏掉了条件:------------------CE垂直AE.(1)证明:连接OC.∵CE为切线.∴OC⊥CE;又AE⊥CE.∴OC∥AE,则∠OCA=∠CAD;又OC=OA,∠OCA=∠C
证明:过O作OE⊥AC,交AC于E∵△ABC中,AB=AC∴∠B=∠C∵O是BC的中点∴BO=CO∵圆与AB相切于点D∴OD⊥AB,且OD为半径∵OE⊥AC∴Rt△BDO全等于Rt△CEO∴OD=OE
1内接正24边形,内接正六边形圆心角为60度,对应AB弦,C点在AB劣弧内,BC对应正8边形的边,圆心角是45度,余下15度,360/15=24,即应是正24边形的边再问:为什么剩下15度再答:60-
AE垂直CD,CD//AB=>AE垂直AB,又AB是圆O的直径且A点在圆上=>AE就圆O的切线