(1)求(1-2x)15的展开式中前4项
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 03:52:23
最后给出前25项的系数的数值:-ArcTan[2],2,0,-8/3,0,32/5,0,-128/7,0,512/9,0,-2048/11,0,8192/13,0,-32768/15,0,131072
利用常见函数的幂级数展开1/(1-x)=Σ[n=(0,∝)]x^n,x∈(-1,1)所以f(x)=1/(x^2+5x+6)=1/[(x+2)(x+3)]=1/(x+2)-1/(x+3)=1/[6+(x
f(x)=1/(x+2)(x-1)=1/3[1/(x-1)-1/(x+2)]=-1/3[1/(1-x)+0.5/(1+0.5x)]=-1/3[1+x+x^2+.+0.5(1-0.5x+0.5^2x^2
函数1/(1+x²)展开成x的幂级数=Σ(n从0到∞)(-x²)的n次方=Σ(n从0到∞)(-1)的n次方·x的2n次方
f(x)=1/x=1/[1+(x-1)]=Σ(n从0到∞)(-1)^n*(x-1)^n收敛区间:|x-1|
f(x)=1/(x-2)(x-1)=1/(x-2)-1/(x-1)=1/2(1-x/2)+1/(1-x)=1/2∑(x/2)n+∑xn∑上面是无穷大,下面是n=0X范围为(-1,1)
f=(x-2)^(-2)f'=-2(x-2)^(-3)f"=3!(x-2)^(-4)..f'n=(-1)^n*(n+1)!(x-2)^(-n-2)f'n(0)=(-1)^n*(n+1)!(-2)^(-
先求ln(1+x)在0处的泰勒展式,这个你不能不会.然后把式子里面的x替换成x^2就好了.看到我得先后顺序没?你看看书.,上面得例题,老兄“他展开时的各级导数不一样的”发现你似乎对泰勒级数不太了解.啊
令t=x-1则x=t+1ln(x+2)=ln(t+3)=ln3+ln(1+t/3)由ln(1+x)=x-x²/2+x^3/3-,收敛域-1
可以利用已知的展开式进行计算,如图.经济数学团队帮你解答.请及时评价.谢谢!
求(1+x)三次方+(1+x)四次方+(1+x)五次方+.+(1+x)n+2次方展开合并同类项后x二次方的系数为C(3,2)+C(4,2)+C(5,2)+.+C(n+2,2)=C(3,3)+C(3,2
*2再除2然后把1-x^2变为(1-x)(1+x)最后拆成两个分式的减法形式然后就是套公式拉~哈哈
F(X)=3/(X^2+X-2)=1/(X-1)-1/(X2)=-1/(1-X)-1/2*1/(1+X/2)函数1/(1-x)和1/1+x是一个公式,以及所述第二开关的xx/2.代入公式即可.收敛区域
f(x)=(1/3)*[1/(1-x)-1/(1+2x)]这样就变成两个等比级数的差一个首项是1/3,公比是x,另一个首相是1/3,公比是-2x下面就简单了f(x)=[(1/3)+(1/3)x+(1/
解题过程请看附图.
套用已知的展开式.经济数学团队帮你解答.请及时评价.
第一个:e^x=Σx^n/n!,所以(x+2)e^x=(x+2)Σx^n/n!=Σx^(n+1)/n!+2Σx^n/n!=Σ(n+2)x^n/n!.式中的Σ是从0到+∞求和.第二个:1/(2-x)
在哪点展开再问:必须给出一点么?0点吧再答:云啊,就零点不行。不为难你了,打个样吧。x0=11/x=1/[1+(x-1)]=1-(x-1)+(x-1)^2-(x-1)^3+=sum_(i=0)^(in
提示:有个公式:(1+x)^α=1+αx+α(α-1)x^2/2!+α(α-1)(α-2)x^3/3!+.在上面展开式中,你用-1/2代α,用-2x代x,最后各项再乘以x就行了.