一个均匀带电的球面在球面外产生的电场与电势与等量
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:44:27
B均匀带电球面,电场是对称分布的,高斯面的选取就选和带电球面同球心的球面,这样高斯面上的各点的场强大小相等,方向沿着球半径,也就是各点的球面法向方向.高斯面的电场强度通量Φe=∮E×dS(矢量积分)=
当没有挖去小块的面积S时,球心处的电场强度为0(这一点可以用微元法证明),现挖去小块的面积S(可视为点电荷),挖去的电荷量为QS/(4πR²),在球心处产生的电场强度为kQS/(4πR^4)
答案是C.某一点电荷在某处产生的场强可以用库仑定律计算,显然不为0.球内场强处处为零是因为整个球面在该处的场强叠加为0.这可以通过电场的高斯定理来解释.
一:球内场强0,球外场强公式同点电荷.二:电场强度的分布同“一”,球心O的电势等于球表面的电势,公式同点电荷.
高斯定理知道吧,你在那两个带电球面之间任意取一个同心高斯球面,它包围的电荷只有q,这样由高斯定理即可知,那两个带电球面之间的电场只由q决定,而与Q无关,所以,两球面的电势差与Q无关.也可由积分运算证明
ds面积上的电荷:q*ds/(4πr^2)所以电场强度大小为:E=[kq*ds/(4πr^2)]/r^2=kq*ds/(4πr^4)电场方向由圆心指向小面积ds.再问:你可能没理解意思问的是挖去了ds
正确的解法应该是完整均匀带电球面的电势(整个球体是等势的)减去ds上的电荷单独存在时在球心处产生的电势——kq/r-k[q(ds/πrr)]/r.你大概是没算kq/r而只算k[q(ds/πrr)]/r
用高斯定理做就可以了.做与球面同心的球面作为高斯面,半径设为2R.由对称性,场强沿高斯面半径方向,高斯面上各点场强的大小处处相等.由高斯定理:E*4π(2R)^2=4πR^2σ/ε0E=σ/4ε0再问
数学上可以证明,电荷均匀分布的带电球体对外部的电作用,等效于位于球心处同样电量的点电荷的作用.——高2物理书那么对这道题,可以根据球体表面积公式算出这个球体的电荷,然后根据点电荷电场强度公式得到答案(
今有一半径为R,带电量为2q的均匀带电球面,其内部电势与球面上的电势___相等__,根据高斯定理可得球面内电场强度为零,所以球内为等势体,球面为等势面,且它们相等.
场强r=R时,根据高斯定理,电场强度为Q/(4πεr*r)图像就是中心发散(像太阳发出万丈光芒,电势若以无穷远处为电势为0rR时,电势为Q/4πεr等势线就是同心圆高斯定理:电场强度对任意封闭曲面的通
半径为R的均匀带电球,其外部电场可视为位于球心的点电荷的电场,类比于静电平衡时,均匀带电的金属球,可知:球外部空间:E=kQ/r^2,φ=kQ/r(r≥R)球内部空间:E=0,φ=kQ/R
电荷只会分布在球面上,不管是球壳还是实心球.根据高斯定理,球面内部电场强度为0再问:电荷是分布在球面上,但是也应该有电场分布啊,为什么只有球外有电场球内没有呢?再答:高斯定理。。。再问:高斯定理是“E
根据电场的高斯定律,电场强度在空间内任意封闭曲面上的面积分值,等于该曲面内电荷量的总和与空间介电常数ε的比值.即:∮EdS=∫(ρ/ε)dV现在我们可以假设最简单的情况,空间内只有一个带电的金属球(电
带电同心球壳?再问:是的,带电的同心球壳再答:小于r1为0,大于r1小于r2为q1/ε,大于r2为(q1+q2)ε
这个没错,不过你千万别把那个带电球面当成封闭曲面了,求外部场强时,需要在外部作一个大的球形封闭曲面,包围了所有的电荷.通过通量计算场强.
如果不是非要列式计算的话,从理论上就可以分析出来静电屏蔽的定义就是,内部不影响外部,外部也不影响内部所以R1内部电势分布:只跟内球面有关系,外球面不产生影响,球壳内部任意一点电势为零(这是个结论吧~)
利用均匀带电球面内部的电势为常数,以及电势连续性、叠加原理,可知,U(P)=Q1/(4πε0·R1)+Q2/(4πε0·R2)
因为内部为等势面,△φ为零,所以电场强度E=0