一个均匀带电的非导体球,电荷体密度,r是球心指向球内任一点的矢径,试证
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:22:48
这里不好书写,帮你找到了一个地址:这里边的例题8-7,具体解答了你的题目,只不过它的电荷线密度字母不是用a表示.
1题取高斯面为半径为r的与球体同心的球面,由对称性,此面上个点场强大小相等方向沿径向,由高斯定理∮sEds=(1/ε0)∫ρdVr≤R时得E1*4πr^2=(1/ε0)ρ(4/3)πr^3E1=ρr/
以球心为原点建立球坐标系.设场点据原点的距离为r1对于球外的场点,即r>R时,可直接使用高斯定理求解.ES=P/ε,其中S=4πr^2整理得:E=P/4πεr^22对于球内的点,即
电荷体密度为P,球体积V,半径r,电荷量QQ=P*V=P*(4πr^3)/3
在球外,可以将这个球壳等效为全部电荷集中在球心的点电荷处理,电势分布为k*4paiR^2σ/r(r>R)在球内的时候因为球壳上均匀带电,可以证明在内部所受合力为零,因此无论如何移动都不做功,因此是一个
这是静电平衡状态,三点合场强相等且合场强且为零.以此感应电场场强与外电场场强大小相同,方向相反Ec>Eb>Ea详细地说:球表面本不显电性,MN提供外电场,在金属球表面感应出不均匀分布的电荷.在不平衡的
弱弱得问一下、你学过电场的高斯定理吗?学过的话就好办、没学过的话还要解释一下高斯定理的证明再问:高斯定理正在学习中,所以就遇到了这个问题再答:哦哦、、我刚刚仔细想了想、这题还真不好办、是求圆环所在明面
以球心为原点建立球坐标系.设场点据原点的距离为r1对于球外的场点,即r>R时,可直接使用高斯定理求解.ES=P/ε,其中S=4πr^2整理得:E=P/4πεr^22对于球内的点,即r再问:屌,大神,再
例4.薄圆盘轴线上的场强.设有一半径为R、电荷均匀分布的薄圆盘,其电荷面密度为σ.求通过盘心、垂直与盘面的轴线上任一点的场强.把圆盘分成许多半径为r、宽度为dr的圆环,其圆环的电量为dq=σds=σ2
用高斯定理∫E·dS=q/ε建坐标,平板中心处x=0在内部做一个柱面,EΔS+EΔS=ρ*2*x*ΔS/ε,E=ρ*x/ε在外部做一个柱面,EΔS+EΔS=ρ*b*ΔS/ε,E=ρ*b/(2ε)
球层的总电荷量为Q=[4Пρ(R2^3-R1^3)]/3所求电势为:V=Q/(K*r)(其中K=9.0*10^9为系数)因球层为均匀,故可用公式V=Q/(K*r)
U=q/(4*pi*e0*R)(r=R)其中pi是派=3.14,e0是真空介电常数
金属球内总电场为0,因此,金属球上的感应电荷在金属球内a,b,c三点的电场强度的大小就分别等于MN上的电荷在这三点所产生的电场强度(方向则是相反的).离MN越近的点,场强越强,所以,Ea
高斯定理:∫Eds=Σqi 典型应用:利用E的分布对称性,合理选取高斯面,使高斯面上各点E的大小相等,面积分∫Eds就简化为ES,S为高斯面的面积.任意一
利用均匀带电球面内部的电势为常数,以及电势连续性、叠加原理,可知,U(P)=Q1/(4πε0·R1)+Q2/(4πε0·R2)
2(1):球壳内场强为零.球壳外场强E=/4πεR^2.(2)球壳内电势为零.球壳外电势E=/4πεR.3(1):B=((2I/0.5d)-(I/0.5d))μ/2π=μI/πd.(2):x=2d/3
1、(1)球壳内电场为零,外部电场为:E=kQ/(r*r),r为该点到球心的距离.(2)球壳内电势为U=kQ/R.球壳外电势为U=kQ/r.(3)根据(1)(2)的结果绘制.2、无限长导线外一点的磁场
一个均匀带电球体的电场相当于把电荷集中在中心的点电荷产生电场一个均匀带电球体外包围一个的带电球壳.因为球对称性,直接对空隙用高斯定理,在空隙里的电场就是把内部球的电荷集中在中心的点电荷产生电场,在球壳