定义在(-∞,+∞)上的奇函数f(x)和偶函数g(x)在区间(-∞,0]上的图象关于x轴对称,且f(x)为增函数,则下列
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 13:24:42
定义在(-∞,+∞)上的奇函数f(x)和偶函数g(x)在区间(-∞,0]上的图象关于x轴对称,且f(x)为增函数,则下列各选项中能使不等式f(b)-f(-a)>g(a)-g(-b)成立的是( )
A. a>b>0
B. a<b<0
C. ab>0
D. ab<0
A. a>b>0
B. a<b<0
C. ab>0
D. ab<0
∵函数f(x)是奇函数,∴f(-x)=-f(x),∴f(b)-f(-a)=f(b)+f(a)
∵函数g(x)是偶函数,∴g(-x)=g(x),∴g(a)-g(-b)=g(a)-g(b)
∵f(b)-f(-a)>g(a)-g(-b),∴f(b)+f(a)>g(a)-g(b)
∵偶函数g(x)在区间(-∞,0]上的图象关于x轴对称,
∴f(x)和g(x)在区间[0,+∞)上图象重合
∴a>b>0成立.
故选A
∵函数g(x)是偶函数,∴g(-x)=g(x),∴g(a)-g(-b)=g(a)-g(b)
∵f(b)-f(-a)>g(a)-g(-b),∴f(b)+f(a)>g(a)-g(b)
∵偶函数g(x)在区间(-∞,0]上的图象关于x轴对称,
∴f(x)和g(x)在区间[0,+∞)上图象重合
∴a>b>0成立.
故选A
定义在(-∞,+∞)上的奇函数f(x)和偶函数g(x)在区间(-∞,0]上的图象关于x轴对称,且f(x)为增函数,则下列
8.定义在(-∞,+∞)上的奇函数f(x)和偶函数g(x)在区间(-∞,0 ]上的图像关于 x轴对称,且f(x
定义在R上的奇函数f(x)和偶函数g(x)在区间负无穷大≤0上的图像关于X轴对称,且奇函数f(x)在R上为增函数
定义在区间(-∞,+∞)上奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)上的图像与f(x)的图像
设函数f(x)的图象关于y轴对称,又已知f(x)在(0,+∞)上为减函数,且f(1)=0,则不等式f(−x)+f(x)x
已知函数f(x)、g(x)分别是定义在R上的奇函数和偶函数,且满足f(x)-g
已知定义在R上的偶函数f(x)在区间[0,+∞)上为减函数,且f(2)=0.设g(x)=根号下(4-a·2^x)的定义域
设 f ( x) 是定义在 [-1,1] 上的奇函数,函数 g ( x) 与 f ( x) 的图象关于 y 轴对称,且当
定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间【0,正无穷】的图像与f(x)的图像重合
已知函数f(x),g(x)都是定义在R上的奇函数,F(x)=f(x)+g(x),且F(x)在(0,+∞)上是减函数.
已知f(x),g(x)都是定义在r上的函数 且满足以下条件 (1)f(x)为奇函数,g(x)为偶函数(2)f(1)=0,
定义在r上的奇函数y=f(X)满足f(3)=0,且不等式f(x)>-x*f'(x)在(0,+∞)上恒成立,则函数g(x)