已知在实数R上的可导函数f(x),满足f(x+1)是奇函数,且当x>=1时,f'(x)分之一>1,则不等式f(x)>x-
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 23:52:21
已知在实数R上的可导函数f(x),满足f(x+1)是奇函数,且当x>=1时,f'(x)分之一>1,则不等式f(x)>x-1的解集是?
有当x>=1时,1/f'(x)>1得:当x>=1时,0<f'(x)<1
设x1<x2<1,则2-x1>2-x2>1
f(x+1)为奇函数,即f(x+1)=-f(-x+1),得f(x)=-f(2-x),f(1)=0
于是f(x1)-f(x2)=-f(2-x1)+f(2-x2)<0
于是当x∈(-无穷,1)时f(x)也是增函数,f(1)=0
所以f(x)在x∈R上式增函数
令g(x)=f(x)-x+1
g'(x)=f'(x)-1<0
于是g(x)是减函数,g(1)=f(1)-1+1=0
于是g(x)>0的解为x<1
设x1<x2<1,则2-x1>2-x2>1
f(x+1)为奇函数,即f(x+1)=-f(-x+1),得f(x)=-f(2-x),f(1)=0
于是f(x1)-f(x2)=-f(2-x1)+f(2-x2)<0
于是当x∈(-无穷,1)时f(x)也是增函数,f(1)=0
所以f(x)在x∈R上式增函数
令g(x)=f(x)-x+1
g'(x)=f'(x)-1<0
于是g(x)是减函数,g(1)=f(1)-1+1=0
于是g(x)>0的解为x<1
已知在实数R上的可导函数f(x),满足f(x+1)是奇函数,且当x>=1时,f'(x)分之一>1,则不等式f(x)>x-
已知函数f(x)是定义在r上的奇函数,当x>0时,f(x)=1-2^(-x)则不等式f(x)
已知函数f(x)是定义在R上的奇函数,且满足f(x+2)=-f(x),当0≤x≤1时,f(x)=12x,则使f(x)=−
已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=x^2-x,计算f(1),f(-1)
已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)是二次函数,满足条件f(0)=0,且f(x+1)=f(x)+
已知f(X)是定义在实数集R上的函数,且满足f(x+2)+f(x+2)f(x)+f(x)=1,
已知定义在R上的奇函数f(x)满足对任意实数x都有f(x+2)+f(x)=0,且当x∈【0,1】时,f(x)=3x,求f
已知函数f(x)是R上的奇函数且当x>0时,f(x)=log2^(x+1)
已知f(x)是定义域在R上的奇函数,当x>0时,f(x)=1-2^-x,则不等式f(x)
已知函数 f(x) 是定义在 R 上的奇函数,f(1)=0 ,xf'(x)-f(x)>0 (x>0) ,则不等式 f(x
已知函数y=f(x)是定义在R上的奇函数,且f(x+2)=-f(x).当0≤x≤1时f(x)=x则f(7.5)=
已知函数f(x)是R上的奇函数,且当x大于0时,f(x)=2x-1,求函数f(x)的解析式