已知数列{an}的通项公式是an=n2+kn+2,若对任意n∈N*,都有an+1>an成立,则实数k的取值范围是k>-3
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 19:44:52
已知数列{an}的通项公式是an=n2+kn+2,若对任意n∈N*,都有an+1>an成立,则实数k的取值范围是k>-3 .
已知数列{an}的通项公式是an=n2+kn+2,若对任意n∈N*,都有an+1>an成立,则实数k的取值范围是( )
A.k>0 \x05\x05\x05B.k>-1
C.k>-2 \x05\x05 D.k>-3
由an+1>an知道数列是一个递增数列,又因为通项公式an=n2+kn+2,可以看作是关于n的二次函数,考虑到n∈N*,所以-k2-3
其中 3/2怎么来的?
已知数列{an}的通项公式是an=n2+kn+2,若对任意n∈N*,都有an+1>an成立,则实数k的取值范围是( )
A.k>0 \x05\x05\x05B.k>-1
C.k>-2 \x05\x05 D.k>-3
由an+1>an知道数列是一个递增数列,又因为通项公式an=n2+kn+2,可以看作是关于n的二次函数,考虑到n∈N*,所以-k2-3
其中 3/2怎么来的?
因为 an+1 > an
所以an+1 - an = (n+1)^2+(n+1)k+2-n^2-kn-2 = 2n+1+k > 0
所以k > -(2n+1)
k>-3
所以an+1 - an = (n+1)^2+(n+1)k+2-n^2-kn-2 = 2n+1+k > 0
所以k > -(2n+1)
k>-3
已知数列{an}的通项公式是an=n2+kn+2,若对任意n∈N*,都有an+1>an成立,则实数k的取值范围是k>-3
已知数列An 的通项公式是 an=n2+kn+2,对于n∈N*都有an+1>an成立,则实数k的取值范
已知数列{an}的通项公式为an=-2n+kn,若数列{an}是递减数列,则实数k的取值范围是
数列{an}中,an=n^2-kn,若对任意的正整数n,an≥a3都成立,则k的取值范围是
已知数列{an}的通项公式为an=n^2-kn,若{an}是递增数列,则实数k的取值范围是
数列{an}中,an=n^2-kn,若对任意的正整数n,an≥a3都成立,求k的取值范围.
数列{an}中,an=n^2-kn,若对任意的正整数n,an≥a3都成立,求k的取值范围
设数列{an}的通项公式为an=n2+kn(n∈N+),若数列{an}是单调递增数列,求实数k的取值范围.
已知【an】是递增数列,且对任意n是正整数,都有an=n^2+bn恒成立,则实数b的取值范围是
已知{an}是递增数列且对任意n∈N*都有an=n^2+λn恒成立,(1)则实数λ的取值范围是λ>-3 (2)对于(1)
an为递减数列,且对于任意正整数n,an= - n^2+kn恒成立,则k的取值范围是
已知数列{an}若an=n²+kn+4且对于n属于自然数,都有an+1>an,求实数k的取值范围