如图所示,已知圆C:(x+1)2+y2=8,定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足AM向量
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 13:59:12
如图所示,已知圆C:(x+1)2+y2=8,定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足AM向量=2AP向量,NP向量⊥AM向量,点N的轨迹为曲线E.(1)求曲线E的方程;(2)若过定点F(0,2)的直线l交曲线E于不同的两点G、H(点G在点F、H之间),且满足FG向量=nFH向量,求n的取值范围.
(1)由题意,点N的轨迹为椭圆,以A(1,0),C(-1,0)为焦点的椭圆
∴c=1
∵AM向量=2AP向量
∴P是AM的中点,又NP向量⊥AM向量
∴|NA|=|NM|,|NC|+|NM|=2√2(定值)=|NC|+|NA|
椭圆方程中2a=2√2,a=√2
∴b=1
∴椭圆的方程为x^²/2+y^²=1,即曲线E的方程为x^²/2+y^²=1
(2)当直线与椭圆相切时n最大,此时n=1,即FG向量=FH向量;
当直线为y轴时n最小,此时|FG|=1,|FH|=3,n=1/3
∴n的取值范围是[1/3,1].
∴c=1
∵AM向量=2AP向量
∴P是AM的中点,又NP向量⊥AM向量
∴|NA|=|NM|,|NC|+|NM|=2√2(定值)=|NC|+|NA|
椭圆方程中2a=2√2,a=√2
∴b=1
∴椭圆的方程为x^²/2+y^²=1,即曲线E的方程为x^²/2+y^²=1
(2)当直线与椭圆相切时n最大,此时n=1,即FG向量=FH向量;
当直线为y轴时n最小,此时|FG|=1,|FH|=3,n=1/3
∴n的取值范围是[1/3,1].
如图所示,已知圆C:(x+1)2+y2=8,定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足AM向量
如图所示,已知圆C:(x+1)2+y2=8,定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足AM向量
已知圆C:(x+1)^2+y^2=8,定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足向量AM=2向
已知圆C:(x+1)2+y2=8,定点A(1,0),C(-1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足向
如图所示,已知园C:(x+1)^2+y^2=8,定点A(1,0),M为圆上一动点,点P在线段AM上,点N在CM上,且满足
高中数学题~已知圆C:(x+1)^2+y^2=8,定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足向
已知圆C:(x+1)^2+y^2=8,定点A(1,0),M为圆C上一动点,点P是线段AM的中点,点N在CM上,且满足NP
已知圆C的方程为(x-3)2+y2=100,定点A(3,0).M为圆C上的一动点,点P在AM上,点N在CM上,
已知圆C:(X+1)*(X+1)+Y*Y=8,定点A(1,0),M为圆上一点,点P在AM上,点N在CM上,且满足A
如图所示,已知圆C:(x +1)²+y²=8,定点A(1,0),M为圆上一动点,点P在AM上,点N在
已知圆C:x2+(y+(根号3)/2)2=4,定点A(0,(根号3)/2),M为圆上一动点,点P在AM上,点N在CM上且
已知圆M(x+5)^2+y^2=36,定点N(5,0)点P为圆M上的动点,点Q在NP上,点G在MP上,且满足向量NP=2