f(x)在[0,1]上连续,在(0,1)内可导,f(1)=0,证明,存在m属于(0,1),使f'(m)=-2f(m)/m
f(x)在[0,1]上连续,在(0,1)内可导,f(1)=0,证明,存在m属于(0,1),使f'(m)=-2f(m)/m
2.f(x)在【0,1】上连续,f(0)=f(1),证明:对自然数n>=2有 m属于(0,1),使f(m)=f(m+1/
f(x)在[a,b]上连续(a,b)内可导f(a)=f(b)=0,证明存在m属于(a,b),使得f'(m)+f(m)=0
设函数f(x)在[0,a]上连续,在(0,a)内可导,且f(0)=0,证明至少存在一点m属于(0,a)使得
设f(x)在[0,1]上有连续的一阶导数,且|f'(x)|≤M,f(0)=f(1)=0,证明:
证明:设f(x)在【a,b】上连续且可导,a>0,则存在m、n属于(a,b),使得f’(m )=[(a+b)/2n]f'
函数f(x)定义域 x不等于0 m,n属于r f(m.n)=f(m)+f(n) (1)判断f(x)奇偶性 (2)f(4)
设函数f(x)=[e^(x-m)]-x,其中m属于R,当m大于1时,判断函数在区间[0,m]内是否存在零点?
证明:f(x)在(a,b)可导连续,f(a)=f(b).至少存在一点m.使f(m)=f'(m)
设f(x)是定义在R上的函数,对mn(属于R)恒有f(m+n)=f(m).f(n)且当x>0时,0<f(x)<1,f(0
函数f(x)对于任意的m,n属于R,都有f(m+n)=f(m)+f(n)-1,且x>0时,f(x)>0,求证f(x)在R
一道证明题设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,证明存在t属于(0,1),使f'(