已知向量OC=(2,2),向量CA=(√2cosα,√2sinα),则|向量OA|的取值范围是?
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/06 06:19:31
已知向量OC=(2,2),向量CA=(√2cosα,√2sinα),则|向量OA|的取值范围是?
向量OC=(2,2) ,向量CA=(√2cosα,√2sinα),
向量OA=向量OC+向量CA=(2+√2cosα,2+√2sinα),
|向量OA|²=(2+√2cosα)²+(2+√2sinα)²
=4+4√2cosα+2cos²α+4+4√2sinα+2sin²α
=10+4√2cosα+4√2sinα
=10+8 sin(α+π/4)
-1≤sin(α+π/4)≤1,所以2≤10+8sin(α+π/4)≤18,
∴√2≤|向量OA|≤3√2.
向量OA=向量OC+向量CA=(2+√2cosα,2+√2sinα),
|向量OA|²=(2+√2cosα)²+(2+√2sinα)²
=4+4√2cosα+2cos²α+4+4√2sinα+2sin²α
=10+4√2cosα+4√2sinα
=10+8 sin(α+π/4)
-1≤sin(α+π/4)≤1,所以2≤10+8sin(α+π/4)≤18,
∴√2≤|向量OA|≤3√2.
已知向量OC=(2,2),向量CA=(√2cosα,√2sinα),则|向量OA|的取值范围是?
已知向量OB=(2,0),向量OC=(2,2) ,向量CA=(√2sin,√2cosα),求向量OA与向量OB夹角的取值
已知向量OB=(2,0),向量OC=(2,2) ,向量CA=(√2sinα,√2cosα),求向量OA与向量OB夹角的取
关于点的轨迹)已知向量OB=(2,0),向量OC=(2,2) ,向量CA=(√2sin,√2cosα),求向量OA与向量
已知向量 OA=(0,2),向量BC=(根号2cosα,根号2sinα)向量OB=(2,0)则OA与OC夹角的取值范围
己知向量OB=(2,0),向量OC=(2,2),向量CA=(√2cosα,√2sinα),则向量OA与向量OB的夹角的范
向量OB=(2,0),向量OC=(2,2),向量CA=(√2cos a,√2sin a),则向量OA与OB的夹角范围?
已知向量OA=(2,0),向量OB=(2+√ 2cos α ,2+√ 2sin α ),则向量OA与向量OB的夹角的取值
已知向量OB=(2,0),OC=(2,2),CA=(根号2 cosα,根号2 sinα),则向量OA与OB的夹角的范围
向量OB=(2,0),向量OC=(2,2),向量CA=(根号2·cos α,根号2·sin α),则向量OA与向量OB的
已知向量OB=(2,0),OC=(2,2),CA=(√2cosa,√2sina),则OA向量与OB向量的家教的范围
已知向量OB=(2,0),向量OC=(2,2),向量CA=(2+(√2)cosα,2+(√2)sinα)