如图所示,△ABC的外接圆圆心0在AB上,点D是BC延长线上一点,DM⊥AB于M,交AC于N,且AC=CD.CP是△CD
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 13:21:53
如图所示,△ABC的外接圆圆心0在AB上,点D是BC延长线上一点,DM⊥AB于M,交AC于N,且AC=CD.CP是△CDN的ND边的中线.
(1)求证:△ABC≌△DNC:
(2)试判断CP与⊙O的位置关系,并证明你的结论.
(1)求证:△ABC≌△DNC:
(2)试判断CP与⊙O的位置关系,并证明你的结论.
(1)∵DM⊥AB,
∴∠AMN=90°,
∴∠MAN=90°-∠MNA,
又∵∠MNA=∠CND,
又∵∠D=90°-∠CND,
∴∠MAN=∠D,
又∵AC=CD,
AB为⊙O的直径,
∴∠ACB=90°=∠NCD,
∴△ABC≌△DNC(ASA)
(2)CP是⊙O的切线.证明如下:
连接OC
∵CP为△CND的中线,
∴CP=PD=NP,
∴∠PCD=∠D=∠MAN.
又∠PCD+∠NCP=90°,∠MAN+∠MBC=90°,
∴∠NCP=∠MBC,
又∵OA=OC,
∴∠OCA=∠MAN
∴∠OCA+∠NCP=∠MAN+∠MBC=90°
∴CP是⊙O的切线.
∴∠AMN=90°,
∴∠MAN=90°-∠MNA,
又∵∠MNA=∠CND,
又∵∠D=90°-∠CND,
∴∠MAN=∠D,
又∵AC=CD,
AB为⊙O的直径,
∴∠ACB=90°=∠NCD,
∴△ABC≌△DNC(ASA)
(2)CP是⊙O的切线.证明如下:
连接OC
∵CP为△CND的中线,
∴CP=PD=NP,
∴∠PCD=∠D=∠MAN.
又∠PCD+∠NCP=90°,∠MAN+∠MBC=90°,
∴∠NCP=∠MBC,
又∵OA=OC,
∴∠OCA=∠MAN
∴∠OCA+∠NCP=∠MAN+∠MBC=90°
∴CP是⊙O的切线.
如图所示,△ABC的外接圆圆心0在AB上,点D是BC延长线上一点,DM⊥AB于M,交AC于N,且AC=CD.CP是△CD
如图,在△ABC中,AB=AC,点E在AB上,点D在AC的延长线上,且CD=EB,ED与BC交于点M,求证:EM=DM.
如图,△ABC中,AB=AC,M是AB上一点,N是AC延长线上的一点,且BM=CN,MN交BC于D,求证:MD=ND.
1.在△ABC中,AB=AC,M是AB上一点,N是AC延长线上一点,且BM=CN,MN交BC于D.求证:MD=ND
在△abc中,m是ac中点,e是ab上一点,且ae=1/4ab,连接em并延长交bc的延长线于d,求证:bc=2cd
如图,在△ABC中,M是AC边中点,E是AB上一点,且AE=14AB,连接EM并延长,交BC的延长线于D,此时BC:CD
如图所示,在△ABC中,AB=AC,D为AB上一点,E为AC延长线上的一点,且CE=BD,连接DE交BC于点P.
如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E.
已知△ABC中AB=AC,M是AB上一点,N是AC延长线上一点,且BM=CN,MN交BC于D求证:MD=ND
如图,△ABC是等边三角形,D为AC上的一点,E为AB的延长线上的一点,CD=BE,DE交BC于点P(1)判断线段DP与
在△ABC中,∠C=90°,M是AB中点,D是AC上一点,且CD=BM,DM交BC的延长线于E,求证:∠A=2∠E
如图所示 在△ABC中,AB=AC D是AB上一点 E是AC延长线上一点 且CE=BD 连接DE交BC于P. 1)求证P