作业帮 > 数学 > 作业

椭圆C1:x^2 /a^2 +y^2/ b^2 =1上的点到抛物线C2:x^2=6by的准线的最短距离为1/2,椭圆C1

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 03:57:44
椭圆C1:x^2 /a^2 +y^2/ b^2 =1上的点到抛物线C2:x^2=6by的准线的最短距离为1/2,椭圆C1的离心率是根号3/2
设C1的右焦点为E,C2的焦点为F,点P是C2上的动点,若三角形EFP的面积为m ,这样的点P有几个
椭圆C1:x^2 /a^2 +y^2/ b^2 =1上的点到抛物线C2:x^2=6by的准线的最短距离为1/2,椭圆C1
据我所知,要分类讨论.按m的大小来讨论吧.
先解出来,C1;x^2 /4 +y^2/ 1 =1 C2:x^2=6y
所以:F(0,1.5) E(根号3,0)
设P(x,x^2/6) 带入EF直线:X/ √3+2Y/3=1
用 求距离公式 可得:
d=∣x/√3 +x^2/6 ×2/3-1∣/√(1/3+4/9)
然后,我觉得,按m的大小来讨论
从而判断d的个数