第一问可以不解释,主要讲解一下第二问,对于既有存在性问题又有恒成立问题的题目我一直无法下手,望得到高手的指教,感激之情溢
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 23:56:07
第一问可以不解释,主要讲解一下第二问,对于既有存在性问题又有恒成立问题的题目我一直无法下手,望得到高手的指教,感激之情溢于言表
(1)解析:∵f(x)=(x^3-6x^2+3x+t)e^x,
f'(x)=(3x2-12x+3)ex+(x3-6x2+3x+t)ex=(x3-3x2-9x+t+3)ex
①∵函数y=f(x)依次在x=a,b,c(ag”(x1)=-120,
∴g(x)在x1处取极大值,在x2处取极小值,
要使g(x)有三个零点
须使g(-1)=t+8>0,g(3)=t-24<0
∴-8<t<24
②∵a,b,c是f(x)的三个极值点,
∴x3-3x2-9x+t+3=(x-a)(x-b)(x-c)=x3-(a+b+c)x2+(ab+bc+ac)x-abc
∴a+b+c=3:ab+ac+bc=-9:t+3=-abc:
三式联立解得
∴b=1或-3/2(舍∵b∈(-1,3))
∴a=1-2√3,b=1,c=1+2√3,
∴t=8
(2)解析:由题意,不等式f(x)≤x==>(x3-6x2+3x+t)ex≤x==>t≤xe-x-x3+6x2-3x
转化为存在实数t∈[0,2],使对任意的x∈[1,m],不等式xe-x-x3+6x2-3x>=t恒成立,
即不等式xe-x-x3+6x2-3x>=2在x∈[1,m]上恒成立.
∵x≠0
∴e-x-x2+6x-5>=0在x∈[1,m]上恒成立.
设h(x)=e-x-x2+6x-5,
h'(x)=-e-x-2x+6
设r(x)=h'(x)=-e-x-2x+6,则r'(x)=e-x-2,
∵x∈[1,m],∴r'(x)<0,r(x)在区间[1,m]上单调减,
∵r(1)=4-e-1>0,r(2)=2-e-2>0,r(3)=e-3<0
∴存在x0∈(2,3),使得r(x0)=h′(x0)=0
即在区间[1,x0)上,h’(x)>0,当x>x0时有h′(x0)<0
就是说,函数y=h(x) 在区间[1,x0]上递增,在区间[x0,+∞)上递减
∵h(1)=e-1+0>0,h(2)=e-2+3>0,h(5)=e-5+0>0,h(6)=e-6-5<0
∴当1≤x≤5时,恒有h(x)>=0;当x>5时,h(x)<0
∴使命题成立的正整数m的最大值为5
f'(x)=(3x2-12x+3)ex+(x3-6x2+3x+t)ex=(x3-3x2-9x+t+3)ex
①∵函数y=f(x)依次在x=a,b,c(ag”(x1)=-120,
∴g(x)在x1处取极大值,在x2处取极小值,
要使g(x)有三个零点
须使g(-1)=t+8>0,g(3)=t-24<0
∴-8<t<24
②∵a,b,c是f(x)的三个极值点,
∴x3-3x2-9x+t+3=(x-a)(x-b)(x-c)=x3-(a+b+c)x2+(ab+bc+ac)x-abc
∴a+b+c=3:ab+ac+bc=-9:t+3=-abc:
三式联立解得
∴b=1或-3/2(舍∵b∈(-1,3))
∴a=1-2√3,b=1,c=1+2√3,
∴t=8
(2)解析:由题意,不等式f(x)≤x==>(x3-6x2+3x+t)ex≤x==>t≤xe-x-x3+6x2-3x
转化为存在实数t∈[0,2],使对任意的x∈[1,m],不等式xe-x-x3+6x2-3x>=t恒成立,
即不等式xe-x-x3+6x2-3x>=2在x∈[1,m]上恒成立.
∵x≠0
∴e-x-x2+6x-5>=0在x∈[1,m]上恒成立.
设h(x)=e-x-x2+6x-5,
h'(x)=-e-x-2x+6
设r(x)=h'(x)=-e-x-2x+6,则r'(x)=e-x-2,
∵x∈[1,m],∴r'(x)<0,r(x)在区间[1,m]上单调减,
∵r(1)=4-e-1>0,r(2)=2-e-2>0,r(3)=e-3<0
∴存在x0∈(2,3),使得r(x0)=h′(x0)=0
即在区间[1,x0)上,h’(x)>0,当x>x0时有h′(x0)<0
就是说,函数y=h(x) 在区间[1,x0]上递增,在区间[x0,+∞)上递减
∵h(1)=e-1+0>0,h(2)=e-2+3>0,h(5)=e-5+0>0,h(6)=e-6-5<0
∴当1≤x≤5时,恒有h(x)>=0;当x>5时,h(x)<0
∴使命题成立的正整数m的最大值为5
第一问可以不解释,主要讲解一下第二问,对于既有存在性问题又有恒成立问题的题目我一直无法下手,望得到高手的指教,感激之情溢
请C语言高手讲解下我问的这题比较笨的问题.
请高手帮下忙(第一问可以直接给答案,主要是第二问的面积求法)
介绍一下夹竹桃不要长篇大论,介绍一下主要的就可以了,我又不是研究这个的.顺便问一下,夹竹桃的“夹”是读第一声还是第二声?
是抛物线的问题,我第一二问会做的,就是第三问不知道怎么弄,希望能得到第三问详细的解答,
我要的是第三问的证明过程.第一问和第二问,是没有问题.
第一张是问题 第二张是我的推导过程 想问一下按我的推导 分子趋近于零,分母无限大,
问一下矩阵、行列式的题目.请看图片后面我的问题.
英语翻译这是封国外公司的供方的调查表,单看字面意思与上下文不匹配,请高手指教此问题到底是问什么方面,
请技术达人帮我讲解一下下面的 matlab 小波变换 代码.有4个问题想问.
初中物理 电学问题.第一个问不用解释了 解释第二个就可以了.谢谢.
麻烦问一下,怎样才可以解决粗心的问题?