用反证法证明:若整数系数方程ax平方+bx+c不等于0(a不等于0)有有理根,则a,b,c中至少有一个数是偶数
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 11:22:36
用反证法证明:若整数系数方程ax平方+bx+c不等于0(a不等于0)有有理根,则a,b,c中至少有一个数是偶数
“故b^2-4ac为偶数” 好象是奇数啊
“故b^2-4ac为偶数” 好象是奇数啊
假设a,b,c都为奇数.
因方程有有理根,所以可设判别式b^2-4ac=d^2,a,b,c均为奇数,故b^2-4ac为偶数,d为奇数
故可设b=2p+1,d=2q+1
b^2-d^2=(b+d)(b-d)=(2p+2q+2)(2p-2q)=4ac
(p+q+1)(p-q)=(p+q+1)(p+q-2q)=ac
式左边若p+q为奇数,则p+q+1为偶数,左式为偶数;
若p+q为偶数,则p+q-2q为偶数,左式为偶数;
而式右由奇数a,c相乘后为奇数,显然等式不成立.
所以假设是错误的,a,b,c中至少有一个数是偶数.
因方程有有理根,所以可设判别式b^2-4ac=d^2,a,b,c均为奇数,故b^2-4ac为偶数,d为奇数
故可设b=2p+1,d=2q+1
b^2-d^2=(b+d)(b-d)=(2p+2q+2)(2p-2q)=4ac
(p+q+1)(p-q)=(p+q+1)(p+q-2q)=ac
式左边若p+q为奇数,则p+q+1为偶数,左式为偶数;
若p+q为偶数,则p+q-2q为偶数,左式为偶数;
而式右由奇数a,c相乘后为奇数,显然等式不成立.
所以假设是错误的,a,b,c中至少有一个数是偶数.
用反证法证明:若整数系数方程ax平方+bx+c不等于0(a不等于0)有有理根,则a,b,c中至少有一个数是偶数
求证:若整数系数方程ax^2+bx+c=0(a不等于0)有有理根,则a,b,c中至少有一个是偶数.
用反证法证明;若整数系数方程ax^2+bx+C=0(A0)有有理数,则A,B,C中至少有一个是偶数
证明:如果整系数二次方程ax²+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个是偶数
证明:如果整系数二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个是偶数.
用反证法证明:若方程ax平方加bx加c等于0(a不等于0)有两个不相等的实数根,则b平方减4ac大于0.马上要,
用反证法证明:若方程ax2+bx+c=0(a不等于0)有两个不相等的实数根,则
用反证法证明命题:"若a+b+c>0.则a,b,c中至少有一个数为整数"
用反证法证明ax^2+bx+c=0(a不等于0)有两个不相等的实数根,则b^2-4ac>0
b平方-4ac>0是方程ax平方+bx+c=0(a不等于0)有实数解的
如果一元二次方程ax^2+bx+c(a不等于0)中,a-b+c=0,那么方程必有一个根是
用反证法证明命题“若a+b+c>0,则a,b,c中至少有一个数是正数"