已知abc都是正数,求证:1/2a+1/2b+1/2c>=1/(a+b)+1/(a+c)+1/(b+c)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 19:17:58
已知abc都是正数,求证:1/2a+1/2b+1/2c>=1/(a+b)+1/(a+c)+1/(b+c)
1/a+1/b≥2/√ab≥2/[(b+a)/2]=4/(b+a)(此处两个不等号均用了不等式x+y≥2√xy)
从而1/4a+1/4b≥1/(b+a)
同理1/4a+1/4c≥1/(c+a)
1/4b+1/4c≥1/(c+b)
相加得到1/2a+1/2b+1/2c≥1/(b+c)+1/(a+c)+1/(a+b)
或者:
1/4a+1/4b
=(a+b)/4ab
≥(a+b)/(a+b)^2
=1/(a+b)
同理1/4b+1/4c≥1/(b+c)
1/4c+1/4a≥1/(c+a)
由以上三式可得1/2a+1/2b+1/2c≥1/(a+b)+1/(b+c)+1/(c+a)
参考资料:statementreply - 同进士出身 六级
从而1/4a+1/4b≥1/(b+a)
同理1/4a+1/4c≥1/(c+a)
1/4b+1/4c≥1/(c+b)
相加得到1/2a+1/2b+1/2c≥1/(b+c)+1/(a+c)+1/(a+b)
或者:
1/4a+1/4b
=(a+b)/4ab
≥(a+b)/(a+b)^2
=1/(a+b)
同理1/4b+1/4c≥1/(b+c)
1/4c+1/4a≥1/(c+a)
由以上三式可得1/2a+1/2b+1/2c≥1/(a+b)+1/(b+c)+1/(c+a)
参考资料:statementreply - 同进士出身 六级
已知abc都是正数,求证:1/2a+1/2b+1/2c>=1/(a+b)+1/(a+c)+1/(b+c)
已知a,b,c都是正数 a+b+c=1 求证a^3+b^3+c^3>=(a^2+b^2+c^2)/3
a,b,c都是正数.求证:1/2a+1/2b+1/2c>=1/(a+b) + 1/(b+c) + 1/(a+c)
设a,b,c都是正数,求证1/2a+1/2b+1/2c>=1/(a+b)+1/(b+c)+1/(c+a)
已知a,b,c都是正数,a+b+c=1,设t=(根号3a+2)+(根号3b+2)+( 根号3c+2),求证:t
高二均值不等式,已知a,b,c都为正数,求证:(a+b+c)(1/(a+b)+1/(b+c)+1/(a+c))>=9/2
设a,b,c都是正数,求证:1/2a+1/2b+1/2c大于等于1/(b+c)+1/(a+c)+1/(a+b)
设a,b,c都是正数,求证:1/2a+1/2b+1/2c 大于等于1/(b+c)+1/(a+c)+1/(a+b)
已知abc均为正数,求证1/2a+1/2b+1/2c>1/a+b +1/b+c +1/a+c
已知abc为不等正数.求证:1/2a+1/2b+1/2c大于1/(b+c)+1/(a+c)+1/(a+b)
已知正数a,b,c,abc=1,a^2/(a+2b)+b^2/(b+2c)+c^2/(c+2a)的最小值
已知a,b,c都是实数,且a+b+c=0,abc=1,求证a,b,c中有且只有一个数大于3/2