作业帮 > 数学 > 作业

函数f(x)=(ax+b)/(1+x^2)是定义在(-1,1)上的奇函数且f(1/2)=2/5.用定义证明f(x)在(-

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 04:11:22
函数f(x)=(ax+b)/(1+x^2)是定义在(-1,1)上的奇函数且f(1/2)=2/5.用定义证明f(x)在(-1,1)上是增函数
函数f(x)=(ax+b)/(1+x^2)是定义在(-1,1)上的奇函数且f(1/2)=2/5.用定义证明f(x)在(-
由题可知,y=f(x)在(-1,1)上为奇函数
所以f(0)=0,即:b=0
于是y=a*x/(1+x^2)
又f(1/2)=2/5,所以a=1
所以y=x/(1+x^2)
奇函数在定义域上具有相同的点调性,所以只需要证明在任意一对称区间上就可以了.
我们现在选择x在(0,1)上
令:0