★★★∫cos(x/2)cos(nx)dx (0→π)定积分★★★
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 16:10:17
★★★∫cos(x/2)cos(nx)dx (0→π)定积分★★★
利用积化和差公式
cos(x/2)cos(nx)=(1/2)[cos(n+1/2)x+cos(n-1/2)x]
积分=(1/2)∫[cos(n+1/2)x+cos(n-1/2)x]dx
=(1/(2n+1))sin[(n+1/2)x]+(1/(2n-1))sin[(n-1/2)x] |
=(1/(2n+1))sin[(n+1/2)π]+(1/(2n-1))sin[(n-1/2)π]
=(1/(2n+1))cosnπ-(1/(2n-1))cosnπ
=[(1/(2n+1))-(1/(2n-1))]cosnπ
=2*(-1)^(n+1)/(4n^2-1)
cos(x/2)cos(nx)=(1/2)[cos(n+1/2)x+cos(n-1/2)x]
积分=(1/2)∫[cos(n+1/2)x+cos(n-1/2)x]dx
=(1/(2n+1))sin[(n+1/2)x]+(1/(2n-1))sin[(n-1/2)x] |
=(1/(2n+1))sin[(n+1/2)π]+(1/(2n-1))sin[(n-1/2)π]
=(1/(2n+1))cosnπ-(1/(2n-1))cosnπ
=[(1/(2n+1))-(1/(2n-1))]cosnπ
=2*(-1)^(n+1)/(4n^2-1)
★★★∫cos(x/2)cos(nx)dx (0→π)定积分★★★
定积分 ∫(0到π) |cos x| dx
计算该定积分 ∫ (π/4 ,0) sinx /cos^2x dx
求定积分∫(π/2,-π/2) 根号cos^x-cos^4x dx
定积分∫(0,x)x*cos(x/2)dx详细解答 本人小白
一个定积分题目∫(上面是x,下面是0) cos (x^2) dx的定积分是多少,
∫2π 0 x×cos^2x dx 定积分
定积分∫(x^2arctanx+cos^5x)dx
求定积分3∫(0,π/3)(7+cos(2x-π/3))dx
数学定积分问题∫(0到π) e^(2cosx)cos(2sinx)cos(3x) dx
∫1/(2+cos x) dx 定积分?
定积分∫π\2 -π\2 (x^2arctanx+cos^5x)dx