ƒ’(x)=arctan(x-1) f(1)=0 求∫f(x)dx 积分区间是(0,1)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 09:52:42
ƒ’(x)=arctan(x-1) f(1)=0 求∫f(x)dx 积分区间是(0,1)
f(x)=∫f'(x)dx=∫arctan(x-1)dx=xarctan(x-1)-∫x*1/[1+(x-1)^2]dx
=xarctan(x-1)-∫[(x-1)+1]/[1+(x-1)^2]dx=xarctan(x-1)-∫[(x-1)/[1+(x-1)^2]dx-)-∫1/[1+(x-1)^2]dx
=xarctan(x-1)-1/2*ln[1+(x-1)^2]-arctan(x-1)+C=(x-1)arctan(x-1)-1/2*ln[1+(x-1)^2]+C
由f(1)=0得C=0,故f(x)=(x-1)arctan(x-1)-1/2*ln[1+(x-1)^2]
故∫(0,1) f(x)dx=∫(0,1) {(x-1)arctan(x-1)-1/2*ln[1+(x-1)^2]}dx (令t=x-1)
=∫(-1,0) [tarctant-1/2*ln(1+t^2)]dt
∫[tarctant-1/2*ln(1+t^2)]dt=∫arctantd(1/2*t^2)-1/2*t*ln(1+t^2)+∫t*1/(1+t^2)*2tdt
=1/2*t^2*arctant-∫1/2*t^2*1/(1+t^2)dt-1/2*t*ln(1+t^2)+∫2t^2/(1+t^2)dt
=1/2*t^2*arctant-1/2*t*ln(1+t^2)+3/2*∫[1-1/(1+t^2)]dt
=1/2*t^2*arctant-1/2*t*ln(1+t^2)+3t/2-3/2*arctant+C
=(t^2-3)/2*arctant+t/2*[3-ln(1+t^2)]+C
故∫(0,1) f(x)dx=∫(-1,0) [tarctant-1/2*ln(1+t^2)]dt
={(t^2-3)/2*arctant+t/2*[3-ln(1+t^2)]}|(-1,0)
=-π/4
=xarctan(x-1)-∫[(x-1)+1]/[1+(x-1)^2]dx=xarctan(x-1)-∫[(x-1)/[1+(x-1)^2]dx-)-∫1/[1+(x-1)^2]dx
=xarctan(x-1)-1/2*ln[1+(x-1)^2]-arctan(x-1)+C=(x-1)arctan(x-1)-1/2*ln[1+(x-1)^2]+C
由f(1)=0得C=0,故f(x)=(x-1)arctan(x-1)-1/2*ln[1+(x-1)^2]
故∫(0,1) f(x)dx=∫(0,1) {(x-1)arctan(x-1)-1/2*ln[1+(x-1)^2]}dx (令t=x-1)
=∫(-1,0) [tarctant-1/2*ln(1+t^2)]dt
∫[tarctant-1/2*ln(1+t^2)]dt=∫arctantd(1/2*t^2)-1/2*t*ln(1+t^2)+∫t*1/(1+t^2)*2tdt
=1/2*t^2*arctant-∫1/2*t^2*1/(1+t^2)dt-1/2*t*ln(1+t^2)+∫2t^2/(1+t^2)dt
=1/2*t^2*arctant-1/2*t*ln(1+t^2)+3/2*∫[1-1/(1+t^2)]dt
=1/2*t^2*arctant-1/2*t*ln(1+t^2)+3t/2-3/2*arctant+C
=(t^2-3)/2*arctant+t/2*[3-ln(1+t^2)]+C
故∫(0,1) f(x)dx=∫(-1,0) [tarctant-1/2*ln(1+t^2)]dt
={(t^2-3)/2*arctant+t/2*[3-ln(1+t^2)]}|(-1,0)
=-π/4
ƒ’(x)=arctan(x-1) f(1)=0 求∫f(x)dx 积分区间是(0,1)
定积分 积分区间[0,1]F(x)dx=?
f(x)=x+2∫f(t)dt,f(x)连续,求f(x) 那个积分是定积分区间是(0,1)
求积分:∫(2,0)f(x)dx,其中f(x)=x,x=1
分部积分法求定积分求定积分∫ln(1+x^2)dx,积分区间 (0,1)求定积分∫arctan跟xdx,积分区间 (0,
f(x)=x+积分符号1到0,xf(x)dx,求f(x)
高数题,设函数f(x)在区间(0,1)上连续,则定积分【从-1到1】{[f(x)+f(-x)+x]x}dx=
定积分f (x)=x^2-x∫(0到2)f(x)dx+2∫(0到1) f(x)d x,求f (x)
设f(X)的导数=arctan(x-1)^2,f(0)=0,求不定积分(0,1)f(X)dx求详解
设f(x)是连续函数,且满足∫[0,x]f(x-t)dt=e^(-2x)-1,求定积分∫[0,1]f(x)dx
求∫f(x-1)dx,积分区间为0到2.
求图中72题解答,f(x)=4x-√(1-x∧2)∫区间《1-0》f(x)dx,求f(x)