计算定积分:∫(0,π)x[(sinx)^m]dx=
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 09:54:23
计算定积分:∫(0,π)x[(sinx)^m]dx=
其中m为自然数,0是下限,π是上限
其中m为自然数,0是下限,π是上限
Im=∫[0,π]x(sinx)^mdx
=∫[0,π]x(sinx)^(m-1)d(-cosx)
=-cosx*x(sinx)^(m-1)|[0,π]+∫[0,π]cosxdx(sinx)^(m-1)
=∫[0,π]cosx*sinx^(m-1)dx+(m-1)∫[0,π]x(cosx)^2(sinx)^(m-2)dx
=∫[0,π]sinx^(m-1)dsinx +(m-1)∫[0,π]x(1-sinx)^2(sinx)^(m-2)dx
=(m-1)∫[0,π]x(sinx)^(m-2)dx+(m-1)Im
=(m-1)Im-2+(m-1)Im
Im=[(m-1)/m]Im-2
I0=∫[0,π]xdx=π^2/2
I1=∫[0,π]xsinxdx=∫[0,π]xd(-cosx)=x*(-cosx)|[0,π] +∫[0,π]cosxdx=π
I2=∫[0,π]x(sinx^2)dx=∫[0,π]xsinxd(-cosx)=∫[0,π]cosxd(xsinx)=∫[0,π]sinxdsinx+∫[0,π]x(cosx)^2dx
=∫[0,π]xdx-∫[0,π]xsinx^2dx
2∫[0,π]x(sinx)^2dx=π^2/2
I2=∫[0,π]x(sinx)^2dx=π^2/4
I3=[(3-1)/3]I1=(2/3)π
I(2n)=[(1*3*5*..*(2n-1))/(2*4*6*..*2n)] (π^2/2)
I(2n-1)=[(2*4*..*(2n-2))/(1*3*5*..*(2n-1))] π
纯复制~
=∫[0,π]x(sinx)^(m-1)d(-cosx)
=-cosx*x(sinx)^(m-1)|[0,π]+∫[0,π]cosxdx(sinx)^(m-1)
=∫[0,π]cosx*sinx^(m-1)dx+(m-1)∫[0,π]x(cosx)^2(sinx)^(m-2)dx
=∫[0,π]sinx^(m-1)dsinx +(m-1)∫[0,π]x(1-sinx)^2(sinx)^(m-2)dx
=(m-1)∫[0,π]x(sinx)^(m-2)dx+(m-1)Im
=(m-1)Im-2+(m-1)Im
Im=[(m-1)/m]Im-2
I0=∫[0,π]xdx=π^2/2
I1=∫[0,π]xsinxdx=∫[0,π]xd(-cosx)=x*(-cosx)|[0,π] +∫[0,π]cosxdx=π
I2=∫[0,π]x(sinx^2)dx=∫[0,π]xsinxd(-cosx)=∫[0,π]cosxd(xsinx)=∫[0,π]sinxdsinx+∫[0,π]x(cosx)^2dx
=∫[0,π]xdx-∫[0,π]xsinx^2dx
2∫[0,π]x(sinx)^2dx=π^2/2
I2=∫[0,π]x(sinx)^2dx=π^2/4
I3=[(3-1)/3]I1=(2/3)π
I(2n)=[(1*3*5*..*(2n-1))/(2*4*6*..*2n)] (π^2/2)
I(2n-1)=[(2*4*..*(2n-2))/(1*3*5*..*(2n-1))] π
纯复制~
计算定积分:∫(0,π)x[(sinx)^m]dx=
计算该定积分 ∫ (π/4 ,0) sinx /cos^2x dx
计算定积分∫(π/2~0) x(sinx+cosx) dx
计算定积分,∫sinx(2-3x)dx
计算定积分I=∫(0→π)f(sinx)/[f(sinx)+f(cosx)]*dx,其中f(x)为连续函数,且f(sin
定积分计算 ∫ π/2 0 sin^x dx
定积分∫(0,1)(x^3-sinx+5)dx
计算两个定积分,上2下0 ∫(x+e^x)dx上π下π/2 ∫(cosx-sinx)dx
计算定积分:∫cosx(1+sinx)dx,(区间0到π/2 )
求定积分x区间为π到0 ∫(x(sinx)^6)dx
定积分∫(0~π)(sinx+cosx)dx,
定积分∫(π→0) sinx dx