在△ABC中,AB=AC,∠BAC=120°,P为BC的中点,小明拿着含有30°角的透明直角三角板
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 17:17:04
在△ABC中,AB=AC,∠BAC=120°,P为BC的中点,小明拿着含有30°角的透明直角三角板
,使30°角的顶点落在点P上,三角板绕P点旋转
,使30°角的顶点落在点P上,三角板绕P点旋转
1)证明:在△ABC中,∠BAC=120°,AB=AC,所以∠B=∠C=30°,
因为∠B+∠BPE+∠BEP=180° 所以∠BPE+∠BEP=150°
因为∠EPF=30°,又因为 ∠BPE+∠EPF+∠CPF=180°
所以∠BPE+∠CPF=150°
所以∠BEP=∠CPF
所以△BPE∽△CFP
(2)①△BPE∽△CFP
②△BPE与△PFE相似.
下面证明结论
同(1)可证△BPE∽△CFP得CP:BE=PF:PE ,而CP=BP
因此BP:BE=PF:PE ,
又因为∠EBP=∠EPF,
所以△BPE∽△PFE
因为∠B+∠BPE+∠BEP=180° 所以∠BPE+∠BEP=150°
因为∠EPF=30°,又因为 ∠BPE+∠EPF+∠CPF=180°
所以∠BPE+∠CPF=150°
所以∠BEP=∠CPF
所以△BPE∽△CFP
(2)①△BPE∽△CFP
②△BPE与△PFE相似.
下面证明结论
同(1)可证△BPE∽△CFP得CP:BE=PF:PE ,而CP=BP
因此BP:BE=PF:PE ,
又因为∠EBP=∠EPF,
所以△BPE∽△PFE
在△ABC中,AB=AC,∠BAC=120°,P为BC的中点,小明拿着含有30°角的透明直角三角板,
在△ABC中,AB=AC,∠BAC=120°,P为BC的中点,小明拿着含有30°角的透明直角三角板
等腰△ABC,AB=AC,∠BAC=120°,P为BC上的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P
等腰△ABC,AB=AC=8,∠BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点
等腰三角形ABC,AB=AC,角BAC=120度,P为BC的中点,小慧拿着含30度角的透明三角板
一道奥数题,简单.等腰三角形ABC,AB=AC,角BAC=120°,P为BC上的中点,小慧拿着含30°角的透明三角板,使
等腰三角形ABC,AB=AC,角BAC=120度,P为BC的中点,小慧拿着含30度角的透明三角板,使30度的顶点落在点P
如图,在等腰RT△ABC中,∠A=90°,P为BC的中点,小明拿着含45°角的透明三角板,使45°角的顶点落在点P,且绕
如图,在等腰RT△ABC中,∠A=90°,P为BC的中点,小明拿着含45°角的透明三角板,使 45°角的顶点落在点P,且
等腰三角形ABC,AB=AC,∠BAC=120°,P为BC中点,拿着含30°角的透明三角尺,使30°角落在点P上,三角尺
如图,在△ABC中AB=AC=2,∠BAC=90°,将直角三角板EPF的直角顶点P放在线段BC的中点上,一点P为旋转中心
如图,在Rt△ABC中,AB=AC=2,∠BAC=90°,将直角三角板EPF的直角顶点P放在线段BC的中点上,以点P为旋