设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=1,f(1)=0.证明存在一点n属于 (0,1),使:
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 17:43:39
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=1,f(1)=0.证明存在一点n属于 (0,1),使:(f(n)的导...
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=1,f(1)=0.证明存在一点n属于 (0,1),使:
(f(n)的导数)=-(f(n) / n)
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=1,f(1)=0.证明存在一点n属于 (0,1),使:
(f(n)的导数)=-(f(n) / n)
设g(x)=x*f(x),g'(x)=x*f'(x)+f(x),g(0)=g(1)=0,根据微分中值定理,(0,1)内存在一点n,
使g'(n)=[g(1)-g(0)]/(1-0)=0,即n*f'(n)+f(n)=0,移项得f'(n)=-f(n)/n
使g'(n)=[g(1)-g(0)]/(1-0)=0,即n*f'(n)+f(n)=0,移项得f'(n)=-f(n)/n
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=1,f(1)=0.证明存在一点n属于 (0,1),使:
设函数f(x)在闭区间[0,1]上连续,且f(0)=f(1),证明至少存在一点a属于[0,1],使得f(a+1/2)=f
设f(x)在闭区间[0,1]上连续,f(0)=f(1),证明存在x0属于[0,n-1/n],使得 f(x0)=f(x0+
设函数f(x)在闭区间(1,1)上连续,在开区间(0,1)内可导,且f(x)=0.证明:存在一点c∈(0,1),使得cf
微分中值定理应用设函数f(x)在区间[0,1]上连续,在(0,1)上可导,且f(1)=0证明:至少存在一点X属于(0,1
设函数f(x)在【0,2】上连续,在(0,2)内可导,且f(0)+f(1)=2.f(2)=1,证明;至少存在一点属于(0
设函数f(x)在闭区间(0,2)上连续,在(0,2)上可导,且f(1)=1,f(0)=f(2)=0,证明:存在a属于(0
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明:至少存在一点a属于(0,1),使f(a)
设f(x)在[0,1]上连续,且f(0)=0,f(1)=1,证明至少存在一点ξ属于(0,1),使f(ξ)=1-ξ
设函数f(x)在闭区间[0,1]上连续,且f(0)=1,f(1)=0,证明:存在&属于(0,1) 使得f(&)=&的平方
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明在(0,1)内至少存在一点&,
设函数f(x)在(a,b)上连续,在(a,b)内可导,且f(a)=0,证明:至少存在一点n属于(a,b)