作业帮 > 数学 > 作业

a1=1 数列 (n+1)an+1^2-nan^2+an+1an=0 求通项公式

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 08:17:37
a1=1 数列 (n+1)an+1^2-nan^2+an+1an=0 求通项公式
a1=1 数列 (n+1)an+1^2-nan^2+an+1an=0 求通项公式
A(n+1)表示第n+1项
(n+1)A(n+1)^2-nAn^2+A(n+1)An=0
n(A(n+1)+An)(A(n+1)-An)+A(n+1)(A(n+1)+An)=0
(A(n+1)+An)[nA(n+1)-nAn+A(n+1)]=0
(A(n+1)+An)[(n+1)A(n+1)-nAn]=0
因为{An}是首项为1的正项数列,因此A(n+1)+An大于0,
因此只有
(n+1)A(n+1)-nAn=0
即A(n+1)=An*n/(n+1)
A2=A1*1/2
A3=A2*2/3
A4=A3*3/4
.
An=A(n-1)*(n-1)/n
左边相乘等于右边相乘,于是得
A2A3A4.An=A1A2A3.A(n-1)1/2*2/3*3/4*.*(n-1)/n
=A1A2A3.A(n-1)1/n
所以An=A1*1/n 又A1=1
所以An=1/n