作业帮 > 数学 > 作业

高数数列极限已知x→Xo时,f(x)+g(x)发散,则在x→Xo时,为什么答案“绝对值f(x)+绝对值g(x)必发散”不

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 06:52:22
高数数列极限
已知x→Xo时,f(x)+g(x)发散,则在x→Xo时,
为什么答案“绝对值f(x)+绝对值g(x)必发散”不对
高数数列极限已知x→Xo时,f(x)+g(x)发散,则在x→Xo时,为什么答案“绝对值f(x)+绝对值g(x)必发散”不
我举个简单的例子吧.

设f(x)=1(即恒等于1的函数)
g(x)=-1(x≥0)=1(x<0)(即g(x)是分段函数,x大于等于0的时候,等于-1;x小于0的时候,等于1)

那么当x→0的时候,f(x)+g(x)=0(x≥0)=2(x<0)无极限,是发散的.

但是|f(x)|+|g(x)|=1+1=2,当x→0的时候,|f(x)|+|g(x)|的极限是2,收敛.

所以此命题错误,是假命题.

根本就在于f(x)和g(x)都是发散,不能得到|f(x)|和|g(x)|也都是发散.
就像前面的g(x),左右极限分别是1和-1这样的相反数.那么绝对值后,就变成了左右极限相同了,有极限了.

愿我的回答对你有帮助!如有疑问请追问,愿意解疑答惑.如果明白,并且解决了你的问题,请及时采纳为满意答案!如果有其他问题请采纳本题后另发点击向我求助,答题不易,请谅解,谢谢.