已知双曲线是左、右焦点分别为F1、F2,离心率为根号2且过点(4,-根号10)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 23:26:26
已知双曲线是左、右焦点分别为F1、F2,离心率为根号2且过点(4,-根号10)
(1)求双曲线的标准方程;
(2)直线x=3与双曲线交于M、N两点,求证:F1M⊥F2M.
(1)求双曲线的标准方程;
(2)直线x=3与双曲线交于M、N两点,求证:F1M⊥F2M.
离心率e=c/a=√2,∴a=b
设双曲线方程为x²-y²=k
代入已知点坐标:k=16-10=6
双曲线方程为x²/6 - y²/6 = 1
(2)代入x=3求得M点纵坐标|Ym|=√3
设MN与x轴交点为H,两焦点坐标为(±2√3,0)
则MH=√3,F1H=3+2√3,F2H=2√3-3
F1H*F2H=3=MH²,根据射影定理可判定F1M⊥F2M
设双曲线方程为x²-y²=k
代入已知点坐标:k=16-10=6
双曲线方程为x²/6 - y²/6 = 1
(2)代入x=3求得M点纵坐标|Ym|=√3
设MN与x轴交点为H,两焦点坐标为(±2√3,0)
则MH=√3,F1H=3+2√3,F2H=2√3-3
F1H*F2H=3=MH²,根据射影定理可判定F1M⊥F2M
已知双曲线是左、右焦点分别为F1、F2,离心率为根号2且过点(4,-根号10)
已知双曲线的左、右焦点分别为F1、F2,离心率为根号2,且过点(4,-根号10)
已知双曲线的的左右焦点分别为F1,F2.离心率为根号2,且过点(4,-根号10)
已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为根号2,且过点(4,-根号10).(1)求双曲线方程
已知双曲线的中心在原点,焦点F1和F2在坐标轴上,离心率为根号2,且过点(4,-根号10)
已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为根号2,且过点(4,-根号10).
已知双曲线的中心在原点.焦点F1,F2在坐标轴上,离心率为根号2,且过点(4,-根号10).
已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率是根号2,且过点(4,根号10)
(1/2)已知双曲线的中心在原点上,焦点F1,F2在坐标轴上,离心率为根号2,且过(4,-根号10).(1)求双曲...
已知双曲线的中心在原点.焦点f1.f2在座标轴上.离心率为根号2.且过点M(4,-根10)
已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为根号2,且过点(4,-根号10)点M(3,m)在双曲线上
(1/2)已知双曲线的中点在坐标原点,左右焦点为F1,F2,在坐标轴上,离心率为根号2,且过点(4,负根号10),(1)