作业帮 > 数学 > 作业

关于最值的一道高一函数题

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 01:32:49
关于最值的一道高一函数题
如图所示,一座小岛距离海岸线上最近的点P的距离是3km,从点P沿海岸正东12km处有一个城镇,假设一个人驾驶的小船的平均速度是3km/h,步行的平均速度是6km/h,x(单位:km)表示此人将船停在海岸处距点P的距离,t(单位:h)表示他从小到到城镇的时间.
问:将船停在海岸的什么地方时此人从小岛到城镇的时间最少?
算出来貌似是x=3/2,但是解析式化简不了,求教
关于最值的一道高一函数题
t=√(x²+3²)/3+[(12-x)/6]
=〔2√(x²+9)-x)/6+2
令y=2√(x²+3²)-x
即y+x=2√(x²+9)
等价于(y+x)²=4(x²+9)(这里x,y均是正数)
即3x²-2yx+36-y²=0①
这是一个关于x的一元二次方程,它是需要有解的
故△=4y²-4·3·(36-y²)≥0
解得y²≥27
故y的最小值是3√3
此时方程①有两个相等的根x0,
由两根相等且根之积为36-y²/3=(36-27)/3=3
得x=√3
如果学了导数,还要会求复合函数的导数,显然高一还没有学
另外本题也可以用三角换元的方法,令x=3tanα
也就是说,本题除了用长度作自变量以外,还可以用角度,然后转换为三角函数的最值,这个最值需要利用数形结合的方法来求.