二次函数压轴题,9.如图1,抛物线F1:y=x2的顶点为P,将抛物线F1平移得到抛物线F2,使抛物线F2的顶点Q始终在抛
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 14:09:06
二次函数压轴题,
9.如图1,抛物线F1:y=x2的顶点为P,将抛物线F1平移得到抛物线F2,使抛物线F2的顶点Q始终在抛物线F1图象上(点Q不与点P重合),过点Q直线QB平行x轴,与抛物线F1的另一个交点为B,抛物线F1的对称轴交抛物线F2于点A.
⑴四边形ABOQ能否成为正方形?若能需增加怎样的条件,说明理由,并求出此时点Q的坐标;
⑵若将“抛物线F1:y=x2”改为“抛物线F1:y=ax2”,其他条件不变,请你探究⑴中的问题;
⑶若将“抛物线F1:y=x2”改为“抛物线F1:y=a(x-m)2+n ”,当四边形ABOQ为正方形时,请你直接写出点Q的坐标
9.如图1,抛物线F1:y=x2的顶点为P,将抛物线F1平移得到抛物线F2,使抛物线F2的顶点Q始终在抛物线F1图象上(点Q不与点P重合),过点Q直线QB平行x轴,与抛物线F1的另一个交点为B,抛物线F1的对称轴交抛物线F2于点A.
⑴四边形ABOQ能否成为正方形?若能需增加怎样的条件,说明理由,并求出此时点Q的坐标;
⑵若将“抛物线F1:y=x2”改为“抛物线F1:y=ax2”,其他条件不变,请你探究⑴中的问题;
⑶若将“抛物线F1:y=x2”改为“抛物线F1:y=a(x-m)2+n ”,当四边形ABOQ为正方形时,请你直接写出点Q的坐标
(1)能
设BQ交y轴于C点
因为是正方形,所以∠AOB=∠AOQ=45°
可知三角形BCO为等腰直角三角形
所以BQ两点的横纵坐标绝对值相等
即|X|=|y|,因为y=x²,所以BQ坐标分别为(-1,1)和(1,1)
(2)道理和(1)一样
只要|X|=|y|就行
x=y或x= -y
x=ax²或x=-ax²
解得x=正负1/a
(3)设Q(x,y)
你把图画出来
可以看到y-n=x-m
a(x-m)²=x-m
x=1/a +m
y=1/a +n
设BQ交y轴于C点
因为是正方形,所以∠AOB=∠AOQ=45°
可知三角形BCO为等腰直角三角形
所以BQ两点的横纵坐标绝对值相等
即|X|=|y|,因为y=x²,所以BQ坐标分别为(-1,1)和(1,1)
(2)道理和(1)一样
只要|X|=|y|就行
x=y或x= -y
x=ax²或x=-ax²
解得x=正负1/a
(3)设Q(x,y)
你把图画出来
可以看到y-n=x-m
a(x-m)²=x-m
x=1/a +m
y=1/a +n
二次函数压轴题,9.如图1,抛物线F1:y=x2的顶点为P,将抛物线F1平移得到抛物线F2,使抛物线F2的顶点Q始终在抛
一道二次函数数学题,定义一种变换:平移抛物线F1得到抛物线F2,使F2经过F1的顶点A.设F2的对称轴分别交F1,F2于
定义一种变换:平移抛物线F1得到抛物线F2,使F2经过F1的顶点A.设F2的对称轴分别交F1
已知F1,F2为椭圆的左、右焦点,抛物线C以F1为顶点,F2为焦点,设P为椭圆和抛物线的一个交点,且
如图15,点P(-m,m2)抛物线:y = x2上一点,将抛物线E沿x轴正方向平移2m个单位得到抛物线F,抛物线F的顶点
已知椭圆C1的左右焦点分别为F1,F2,抛物线C2以F1为顶点,以F2为焦点,
如图,把抛物线y=1/2·x²平移得到抛物线m,抛物线m经过点A(-6,0)和原点,顶点为P...
已知抛物线Y=X2+BX+1顶点最初在X轴上,且位于Y轴的左侧,现将该抛物线向下平移,设抛物线在平移过程中,顶点为D,与
已知椭圆X^2/a^2+y^2/b^2=1(a>b>0) 的离心率为e,两焦点为F1、F2抛物线以F1为顶点,F2为焦点
二次函数 已知抛物线y=1/2x2-2x+1的顶点为P,A为抛物线顶点与y 轴的交点,过点A与y轴垂直的直线与抛物线的另
把抛物线y=-x的平方向上平移4个单位后,得到的抛物线的函数表达式为 平移后的抛物线的顶点坐标是
抛物线,椭圆方程抛物线C:y=(-1/3)x^2+1与坐标轴的焦点分别为P、F1、F2,其中F1,F2是与x轴的交点(1