作业帮 > 数学 > 作业

有理数可数性这句话是啥意思啊,老师上高数时候说的什么可以和自然数一一对应是什么来的,但是不要复制粘贴,我真心求教

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 01:01:10
有理数可数性
这句话是啥意思啊,老师上高数时候说的什么可以和自然数一一对应是什么来的,但是不要复制粘贴,我真心求教
有理数可数性这句话是啥意思啊,老师上高数时候说的什么可以和自然数一一对应是什么来的,但是不要复制粘贴,我真心求教
这要运用很高深的数学理论才能说的清楚,你老师有点不负责任,说出来又不解释清楚.不过我试着简单的解释.
通俗来说,可数性是指可通过用自然数来排序的数学性质,就像你老师说的那样.我可以把这种排序列出来
1/2 1
1/3 2
2/3 3
1/4 4
(2/4 1 相当于1/2)
3/4 5
1/5 6
2/5 7
3/5 8
4/5 9
…… ……
只要一直无限地列下去,都会有一个自然数对应一个小于1的分数,说明小于1的分数有可数性.而大于1的分数都是自然数加上小于1的分数(可数+可数),所以也是可数的,这就证明有理数是可数的了.
可数就意味着分立,不连续,无法把数轴上的点全覆盖掉.因为在数轴上,无论两个有理数点如何靠近,他们之间的有理数仍然是可数的,总是分立的.
要把数轴的点全覆盖就需要全体实数来完成.就是说必须有无限不循环小数加上有理数才能把能表示整个数轴,因为实数是不可数的,无法通过自然数去排序.数轴上无限小间隔的两个数中间,实数仍然是不可数,这就是连续性,不分立性.
然后再延伸到无穷大的概念.无穷大是有等级的,因为有理数个数是无穷大,而实数的个数也是无穷大,但是前者是分立的,可数的,而后者则是连续的,不可数的,所以前者的无穷大和后者的无穷大是不一样的.