f(x)单调增加有连续导数,且f(0)=0,f(a)=b,求证,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 04:12:29
f(x)单调增加有连续导数,且f(0)=0,f(a)=b,求证,
f(x)单调增加有连续导数,且f(0)=0,f(a)=b,求证:积分区间为0到a的∫f(x)dx+积分区间0到b的∫g(x)dx=ab,其中g(x)是f(x)的反函数~懵了~
f(x)单调增加有连续导数,且f(0)=0,f(a)=b,求证:积分区间为0到a的∫f(x)dx+积分区间0到b的∫g(x)dx=ab,其中g(x)是f(x)的反函数~懵了~
对第2个积分设变量代换t=g(x),则x=f(t),x从0到b时,则t从0到a
=∫[0,a]f(x)dx+∫[0,a]tf'(t)dt=∫[0,a]f(x)dx+∫[0,a]tdf(t)(对第2个再用分部积分)
==∫[0,a]f(x)dx+tf(t)|[0,a]-∫[0,a]f(t)dt=af(a)=a
=∫[0,a]f(x)dx+∫[0,a]tf'(t)dt=∫[0,a]f(x)dx+∫[0,a]tdf(t)(对第2个再用分部积分)
==∫[0,a]f(x)dx+tf(t)|[0,a]-∫[0,a]f(t)dt=af(a)=a
f(x)单调增加有连续导数,且f(0)=0,f(a)=b,求证,
设函数f(x)在[a,b]上连续,在(a,b)内有二阶导数,且有f(a)=f(b)=0,f(c)>0(a
设 f(x)在〔a,b〕上具有一阶连续导数,且|f‘ (x)|≤M,f(a)=f(b)=0,求证∫(a,b)f(x)dx
设函数f(x)在[a,b]上有连续导数,且f(c)=0,a
关于导数的一道题f(x)连续,且x=0处的导数大于零,那么存在一个数a,使得A.f(x)在(0,a)内单调递增 B.f(
高数导数应用证明题设函数f(x)在【0,a】上连续,在(0,a)内可导,且f(0)=0,f’(x)单调增加,令g(x)=
设函数f(x)在[a,b]上连续,在(a,b)内可导,且满足f(a)=0,若f'(x)单调增加,则φ(x)=f(x)/(
设f(x)有连续导数,且f(0)=0,f'(0)≠0,
设f(x)在[a,b]上有连续的导数,且f(x)不恒等于0,f(a)=f(b)=0,证明∫(a,b)xf(x)f'(x)
f(x)在[0,+∞)上有二阶连续导数,且f''(x)≥a>0,f(0)=0,f'(0)
设f(x)有连续的导数,f(0)=0,且f'(0)=b,若函数F(x)=(f(x)+asinx)/x,x≠0;A,x=0
设函数f(x)在【a,b】上连续且单调增加,求证∫[a ,b] xf(x)dx >=a+b/2∫[a ,b] f(x)d