函数y=f(x)在区间(0,+∞)内可导.导函数f′(x)是减函数,且f′(x)>0,x0∈(0,+∞).
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 08:57:05
函数y=f(x)在区间(0,+∞)内可导.导函数f′(x)是减函数,且f′(x)>0,x0∈(0,+∞).
g(x)=kx+m是y=f(x)在点(x0,f(x0))处的切线方程.
(1)用x0,f(x0),f′(x0)表示m;
(2)证明:当x∈(0,+∞)时,g(x)≥f(x);
g(x)=kx+m是y=f(x)在点(x0,f(x0))处的切线方程.
(1)用x0,f(x0),f′(x0)表示m;
(2)证明:当x∈(0,+∞)时,g(x)≥f(x);
(1)
(x0,f(x0)),(x0,f′(x0))均在切线上 则切线方程为:
y-f(x0)=f′(x0)(x-x0),故m=f(x0)-x0f′(x0)
(2)
证明当x∈(0,+∞)时,g(x)≥f(x);可证明当x∈(0,+∞)时,g(x)-f(x)≥0成立
即h(x)=g(x)-f(x)=f′(x0)(x-x0)+f(x0)-f(x)≥0
f′(x)是减函数,且f′(x)>0
则f(x)为(0,+∞)的增函数 且增长的越来越慢
则可知:切线切于f(x),当xx0时,f′(x0±Δx)≥f(x0±Δx)
则当x>x0时,f′(x0)≥(f(x)-f(x0))/(x-x0)
f′(x0)(x-x0)+f(x0)-f(x)≥0成立
当x
(x0,f(x0)),(x0,f′(x0))均在切线上 则切线方程为:
y-f(x0)=f′(x0)(x-x0),故m=f(x0)-x0f′(x0)
(2)
证明当x∈(0,+∞)时,g(x)≥f(x);可证明当x∈(0,+∞)时,g(x)-f(x)≥0成立
即h(x)=g(x)-f(x)=f′(x0)(x-x0)+f(x0)-f(x)≥0
f′(x)是减函数,且f′(x)>0
则f(x)为(0,+∞)的增函数 且增长的越来越慢
则可知:切线切于f(x),当xx0时,f′(x0±Δx)≥f(x0±Δx)
则当x>x0时,f′(x0)≥(f(x)-f(x0))/(x-x0)
f′(x0)(x-x0)+f(x0)-f(x)≥0成立
当x
函数y=f(x)在区间(0,+∞)内可导.导函数f′(x)是减函数,且f′(x)>0,x0∈(0,+∞).
函数y=f(x)在区间(0,+∞)内可导,导函数 是减函数,且 设 是曲线y=f(x)在点(x0,f(x0))得的切线方
定义在R上的函数f(x)满足f(xy)=f(x)+f(y),且f(x)是区间(0,正无穷)上递增函数
已知函数f(x)=lnx/x,导函数为f(x)'.在区间[2,3]上任取一点x0,使得f'(x0)>0的概
f(x0是定义在(0,+∞)上的增函数,且f(x/y)=f(x)-f(y),若f(6)=1,解不等式f(x+3)-f(1
设函数y=f(x)在点x0处有导数,且f'(x0)>0,则曲线y=f(x)在点(x0,f(x0))处切线的倾斜角的范围是
3.设函数f (x)定义在开区间I上,I,且点(x0,f (x0) )是曲线y= f (x)的拐点,则必有 ( ) A.
设函数f (x)定义在开区间I上,I,且点(x0,f (x0) )是曲线y= f (x)的拐点,则必有( )
已知函数f(x)是定义在(0,+∞)上的减函数,且满足f(xy)=f(x)+f(y),f(4)=1,
定义:对于区间I内连续可导的函数Y=f(x),若 X0 I,使f(x0)=f,(x0)=0,则称X0为函数Y=f(x)的
证明函数f(x)=x分之4在区间(0,+∞)是减函数
若f′(x0)=0,f〃(x0)=0,则函数y=f(x)在点x=x0处( )