作业帮 > 数学 > 作业

求下列不定积分.(1)∫[(1-x)²/³√x]dx;(6) ∫[3x²/(1﹢x

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 03:52:24
求下列不定积分.
(1)∫[(1-x)²/³√x]dx;
(6) ∫[3x²/(1﹢x²)]dx;
(10) ∫[(x³-64)/(x﹣4)]dx;
求下列不定积分.(1)∫[(1-x)²/³√x]dx;(6) ∫[3x²/(1﹢x
1.原式=∫(1-2x+x^2)/x^(1/3)dx
=∫x^(-1/3)dx-2∫x^(2/3)dx+∫x^(5/3)dx
=3/2x^(2/3)-6/5x^(5/3)+3/8x^(8/3)+C
2.原式=∫(3x^2+3-3)/(1+x^2)dx
=∫3dx-3∫dx/(1+x^2)
=3x-3arctanx+C
3.原式=∫(x^2+4x+16)dx
=x^3/3+2x^2+16x+C