f(x)在[0,b]为单调非负函数且连续,0
f(x)在[0,b]为单调非负函数且连续,0
证明:若函数f(x)在[a,b]连续、非负,且∫f(x)dx=0,则f(x)=0.
设f(x)在[a,b]上连续且非负
设函数f(x)在[a,b]上连续,在(a,b)内可导,且满足f(a)=0,若f'(x)单调增加,则φ(x)=f(x)/(
设函数y=f(x)在[a,b]上连续且单调,证明其反函数在相应区间上也连续且单调
设f(x)是定义在R连续的偶函数,且当x>0时,f(x)为单调函数,则满足f(x)=(x+3/x+4) 的所有x 之和为
设函数f(x)在[0,1]上连续且非负,证:存在ζ∈(0,1)使ζf(ζ)=∫(1,ζ)f(x)dx
f(x)在(0.1)上连续且单调增,证明∫[0,1]f(x)dx
设f(x)在[a、b]上连续且方程f(x)=0在[a、b]上无实根,试证明f(x)在[a、b]上恒为正或恒为负.
大一定积分问题设y=f(x)在x≥0时为连续的非负函数,且f(0)=0,V(t)表示y=f(x),x=t(>0)及x轴所
f(x)是定义在(负无穷,0)并(0,正无穷)上的函数,对任意非零实数a,b满足,f(ab)=f(a)+f(b),且f(
设函数f(x)在[0,1]连续且单调增加,证明F(X)=(1/X)∫[0,x]f(t)dt在(0,1)内也单调增加