在数列{an}中,an+Sn=n2+2n-1,n属于N* 令bn=an*(1/2)的n-1次方,证:b1+b2+b3+.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 01:57:34
在数列{an}中,an+Sn=n2+2n-1,n属于N* 令bn=an*(1/2)的n-1次方,证:b1+b2+b3+.+bn
证明:∵an+Sn=n²+2n-1,∴a(n+1)+S(n+1)=(n+1)²+2(n+1)-1
则a(n+1)-an+S(n+1)-Sn=(n+1)²+2(n+1)-1-(n²+2n-1)
有2a(n+1)-an=2n+3 ; 整理:2[a(n+1)-2(n+1)+1]=an-2n+1
∵a1+S1=1²+2*1-1 ;∴2a1=2 ;则a1=1;a1-2*1+1=0
则2[a(n+1)-2(n+1)+1]=an-2n+1=0 ;故an=2n-1 n∈N* ;
则bn=an*(1/2)^(n-1)=(2n-1)*(1/2)^(n-1) n∈N* ;
又bn=(2n-1)*(1/2)^(n-1)=2n*(1/2)^(n-1)-(1/2)^(n-1)
则bn+(1/2)^(n-1)=n*(1/2)^(n-2)=(1/2)^(n-2)+(1/2)^(n-2)+•••+(1/2)^(n-2)-(1/2)^(n-1) 即n个(1/2)^(n-2)相加
则b1+b2+b3+•••+bn+(1/2)^(1-1)(1-1/2^n)/(1-1/2)=(1/2)^(1-2)+[(1/2)^(2-2)+(1/2)^(2-2)]+[(1/2)^(3-2)+(1/2)^(3-2)+(1/2)^(3-2)]+•••+[(1/2)^(n-2)+(1/2)^(n-2)+•••+(1/2)^(n-2)]=[(1/2)^(1-2)+(1/2)^(2-2)+(1/2)^(3-2)+•••+(1/2)^(n-2)]+[(1/2)^(2-2)+(1/2)^(3-2)+•••+(1/2)^(n-2)]+[(1/2)^(3-2)+1/2)^(4-2)+•••+(1/2)^(n-2)]+•••+[(1/2)^(n-3)+(1/2)^(n-2)]+(1/2)^(n-2)=2(1-1/2^n)/(1-1/2)+[1-1/2^(n-1)]/(1-1/2)+1/2[1-1/2^(n-2)]/(1-1/2)+•••+(1/2)^(n-3)(1-1/2²)/(1-1/2)+(1/2)^(n-2)(1-1/2)/(1-1/2)=2{1/2^(-1)(1-1/2^n)+1/2^0[(1-1/2^(n-1)]+1/2^1[1-1/2^(n-2]+•••+(1/2)^(n-2)(1-1/2)/}=2[1/2^(-1)+1/2^(0)+1/2^1+•••+(1/2)^(n-2)-n/2^(n-1)]=2[4(1-1/2^n)-n/2^(n-1)]=8-1/2^(n-3)-n/2^(n-2)
故b1+b2+b3+•••+bn+(1/2)^(1-1)(1-1/2^n)/(1-1/2)
=b1+b2+b3+•••+bn+2-1/2^(n-1)=8-1/2^(n-3)-n/2^(n-2)
则:b1+b2+b3+•••+bn=6+1/2^(n-1)-1/2^(n-3)-n/2^(n-2)=6-3/2^(n-3)-n/2^(n-2)
则a(n+1)-an+S(n+1)-Sn=(n+1)²+2(n+1)-1-(n²+2n-1)
有2a(n+1)-an=2n+3 ; 整理:2[a(n+1)-2(n+1)+1]=an-2n+1
∵a1+S1=1²+2*1-1 ;∴2a1=2 ;则a1=1;a1-2*1+1=0
则2[a(n+1)-2(n+1)+1]=an-2n+1=0 ;故an=2n-1 n∈N* ;
则bn=an*(1/2)^(n-1)=(2n-1)*(1/2)^(n-1) n∈N* ;
又bn=(2n-1)*(1/2)^(n-1)=2n*(1/2)^(n-1)-(1/2)^(n-1)
则bn+(1/2)^(n-1)=n*(1/2)^(n-2)=(1/2)^(n-2)+(1/2)^(n-2)+•••+(1/2)^(n-2)-(1/2)^(n-1) 即n个(1/2)^(n-2)相加
则b1+b2+b3+•••+bn+(1/2)^(1-1)(1-1/2^n)/(1-1/2)=(1/2)^(1-2)+[(1/2)^(2-2)+(1/2)^(2-2)]+[(1/2)^(3-2)+(1/2)^(3-2)+(1/2)^(3-2)]+•••+[(1/2)^(n-2)+(1/2)^(n-2)+•••+(1/2)^(n-2)]=[(1/2)^(1-2)+(1/2)^(2-2)+(1/2)^(3-2)+•••+(1/2)^(n-2)]+[(1/2)^(2-2)+(1/2)^(3-2)+•••+(1/2)^(n-2)]+[(1/2)^(3-2)+1/2)^(4-2)+•••+(1/2)^(n-2)]+•••+[(1/2)^(n-3)+(1/2)^(n-2)]+(1/2)^(n-2)=2(1-1/2^n)/(1-1/2)+[1-1/2^(n-1)]/(1-1/2)+1/2[1-1/2^(n-2)]/(1-1/2)+•••+(1/2)^(n-3)(1-1/2²)/(1-1/2)+(1/2)^(n-2)(1-1/2)/(1-1/2)=2{1/2^(-1)(1-1/2^n)+1/2^0[(1-1/2^(n-1)]+1/2^1[1-1/2^(n-2]+•••+(1/2)^(n-2)(1-1/2)/}=2[1/2^(-1)+1/2^(0)+1/2^1+•••+(1/2)^(n-2)-n/2^(n-1)]=2[4(1-1/2^n)-n/2^(n-1)]=8-1/2^(n-3)-n/2^(n-2)
故b1+b2+b3+•••+bn+(1/2)^(1-1)(1-1/2^n)/(1-1/2)
=b1+b2+b3+•••+bn+2-1/2^(n-1)=8-1/2^(n-3)-n/2^(n-2)
则:b1+b2+b3+•••+bn=6+1/2^(n-1)-1/2^(n-3)-n/2^(n-2)=6-3/2^(n-3)-n/2^(n-2)
在数列{an}中,an+Sn=n2+2n-1,n属于N* 令bn=an*(1/2)的n-1次方,证:b1+b2+b3+.
已知数列an的通项公式为an=3^n-1,在等差数列bn中,bn>0(n属于n*),且b1+b2+b3=15
已知数列{an},an=2n-1,{an}和{bn}满足等式an=b1/2+b2/2平方+b3/2三次方+.bn/2的n
数列{an}中a1=1 a(n+1)=2Sn + 1等差数列{bn}中bn大于0 b1+b2+b3=15且a1+b1,a
数列{an}的前n项的和Sn=n2-10n(n属于N*),数列{bn}满足bn=(an+1)/an(n属于N*),(1)
数列{an}满足an=n(n+1)^2,是否存在等差数列{bn}使an=1*b1+2*b2+3*b3+...n*bn,对
已知数列{an}的前n项和sn=n2,数列{bn}中b1=2,bn=2bn-1(n≥2)
已知an=2n-1,an=b1/2+b2/2^2+b3/2^3+……+bn/2^n,求数列bn的前n项和Sn
已知数列{an}的前n项和Sn=-an-(1/2)^(n-1)+2(n为正整数).令bn=2^n*an,求证数列{bn}
已知数列{an}的前n项和Sn=3n2+5n,数列{bn}中,b1=8,bn-1=64bn(n≥2,n∈N*)
已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
令bn=1/(n2+2n) Tn=b1+b2+b3+……+bn