已知向量a=(sinx+cosx,√3sinx),b=(sinx-cosx,2cosx),f(x)=ab+√3/2
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 23:20:08
已知向量a=(sinx+cosx,√3sinx),b=(sinx-cosx,2cosx),f(x)=ab+√3/2
将函数f(x)写成Asin(wx+y)+B的形式,求其图形的对称中心
若x属于(0,π/2],求f(x)的值域
将函数f(x)写成Asin(wx+y)+B的形式,求其图形的对称中心
若x属于(0,π/2],求f(x)的值域
向量a=(sinx+cosx,√3sinx),b=(sinx-cosx,2cosx),
f(x)=ab+√3/2
=(sinx+cosx)(sinx-cosx)+2√3sinxcosx+√3/2
= -(cos²x-sin²x)+√3sin2x+√3/2
=√3sin2x-cos2x+√3/2
=2(√3/2*sin2x-1/2*cos2x)+√3/2
=2sin(2x-π/6)+√3/2
sin(2x-π/6)=0时,得到曲线对称中心
∴2x-π/6=kπ,k∈Z
得x=kπ/2+π/12,k∈Z
∴曲线对称中心(kπ/2+π/12,√3/2),k∈Z
2
∵x∈(0,π/2]
∴-π/6
f(x)=ab+√3/2
=(sinx+cosx)(sinx-cosx)+2√3sinxcosx+√3/2
= -(cos²x-sin²x)+√3sin2x+√3/2
=√3sin2x-cos2x+√3/2
=2(√3/2*sin2x-1/2*cos2x)+√3/2
=2sin(2x-π/6)+√3/2
sin(2x-π/6)=0时,得到曲线对称中心
∴2x-π/6=kπ,k∈Z
得x=kπ/2+π/12,k∈Z
∴曲线对称中心(kπ/2+π/12,√3/2),k∈Z
2
∵x∈(0,π/2]
∴-π/6
已知向量a=(sinx+cosx,√3sinx),b=(sinx-cosx,2cosx),f(x)=ab+√3/2
已知向量a=(√3sinx,cosx+sinx),b=(2cosx,cosx-sinx ),函数f(x)=a·b,x∈R
已知向量a=(sinx,√3sinx),b=(2cosx,cosx),定义f(x)=a*b
已知向量a=(√3sinx,cosx),b=(cosx,cosx),函数f(x)=ab+m
已知向量a=(sinx,√3cosx),向量b=(cosx,cosx),f(x)=向量a×向量b
已知向量a=(sinx,√3cosx),向量b=(cosx,cosx),f(x)=向量a *向量b
已知函数向量a=(2cosx,√3sinx),向量b=(cosx,2cosx)...
已知向量a=(2cosx,sinx),向量b=(√3cosx,2cosx)
已知向量a=(sinx,sinx+cosx)b=(2cosx,cosx-sinx),设f(x)=a*b
已知向量a等于(2sinx,cosx+sinx),向量b=(根号3cosx,sinx-cosx)定义f(x)=向量a*向
已知向量a=(√3sinx,cosx),b=(cosx,cosx)函数f(x)=2ab-1 若x属于[0,π/2]时,f
已知向量a=(2cosx,sinx)向量b={cos(x-π/3),√3cosx-sinx}