设A,B是椭圆x^2+5y^2=1上的两个动点,且OA⊥OB(O为坐标原点),求/AB/的最大值和最小值
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 01:55:36
设A,B是椭圆x^2+5y^2=1上的两个动点,且OA⊥OB(O为坐标原点),求/AB/的最大值和最小值
答案不好打, 设OA=m,OB=n ,s设OA与X轴的正方向夹角为& 则A点的坐标A(mcos&,msin&),B(nsin&,ncos&),又A,B两点在椭圆上,代入坐标,有 (mcos&^2+5(msin&)^2=1, (nsin&)^2+5(ncos&)^2=1 整理得 1/m^2=cos&^2+5sin&^2 1/n^2=sin&^2+ 5cos&^2 两式相加 有1/m^2+1/n^2=6 再根据 AB^2=m^2+n^2 可利用不等式轻易解得 打字太麻烦了,后面很简单,省了
采纳哦
采纳哦
设A,B是椭圆x^2+5y^2=1上的两个动点,且OA⊥OB(O为坐标原点),求/AB/的最大值和最小值
设A,B是椭圆x2+3y2=1上的两个动点,且OA OB(O为原点),求|AB|的最大值与最小值.
设A、B是椭圆x^2/4+y^2=1上的两点,O为坐标原点 若直线AB在y轴上的截距为4,且OA,OB斜率之和等于2
设A.B是椭圆x^2+3y^2=1上的两个动点,满足向量OA*向量OB=0,其中O是坐标原点
已知点B(2,0),点O为坐标原点,点A在圆(x-2)2+(y-2)2=1上,则向量OA与OB的夹角θ的最大值与最小值分
高二解析几何(椭圆)设A,B是椭圆(x^2)/4+(y^2)=1上的两点,O为坐标原点若直线AB在y轴上截距为4,且OA
已知点A,B是双曲线x方-(y方/2)=1上的两点,O是坐标原点,且满足OA向量×OB向量=0,则点O到直线AB的距离等
A,B是抛物线y^2=2px(p>0)上的两个动点,O为坐标原点,直线OA,OB倾斜角之和为135°.求证直线AB过定点
A.B是抛物线Y平方=4x上的2点,且满足OA垂直OB(O为原点),求证:直线AB经过一个定点
斜率为2的直线与椭圆x^2/4+y^2=1交于两点A,B,求|OA||OB|范围(O为坐标原点)
设A和B为抛物线y^2=4x上除原点外的动点,已知OA,⊥OB,OM⊥AB,求点M的轨迹方程
已知向量A(x+1,y)向量B=(x-1,y),点O为坐标原点,且向量OA的模+OB的模=4,则x^2+y^2的最大值为