已知椭圆c1:x2/a2+y2/b2=1(a>b>0)的左右焦点分别为F1,F2,其中F2也是抛物线C2:y^2=4x的
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 21:06:17
已知椭圆c1:x2/a2+y2/b2=1(a>b>0)的左右焦点分别为F1,F2,其中F2也是抛物线C2:y^2=4x的焦点,...
已知椭圆c1:x2/a2+y2/b2=1(a>b>0)的左右焦点分别为F1,F2,其中F2也是抛物线C2:y^2=4x的焦点,离心率e=√2/2,求椭圆标准方程.2过点A(2,0)且不垂直于坐标轴的直线和椭圆交于P、Q两点,其中Q在p,A之间,证明:∠QF2A=∠PF2F1.
已知椭圆c1:x2/a2+y2/b2=1(a>b>0)的左右焦点分别为F1,F2,其中F2也是抛物线C2:y^2=4x的焦点,离心率e=√2/2,求椭圆标准方程.2过点A(2,0)且不垂直于坐标轴的直线和椭圆交于P、Q两点,其中Q在p,A之间,证明:∠QF2A=∠PF2F1.
(1)F2也是抛物线C2:y^2=4x的焦点,F2(1,0) ,所以 c=1
e=c/a=√2/2 所以a=√2
椭圆方程是:x^2/2+y^2=1
(2)由对称性,不妨只看直线PQ在x轴上方的情形
设直线为y=k(x-2) P(x1,y1) Q(x2,y2)
联立得到:(1+2k^2)x^2-8k^2x+8k^2-1=0
由韦达定理可得:
x1+x2=8k^2/(1+2k^2)
x1x2=(8k^2-2)/(1+2k^2)
要证∠QF2A=∠PF2F1
即证tan∠QF2A=tan∠PF2F1
由图看出,即证y2/(x2-1)=y1/(1-x1)
即证k(x2-2)/(x2-1)=k(x1-2)/(1-x1)
即证(x2-2)(1-x1)-(x1-2)(x2-1)=0
即证-2x1x2+3(x1+x2)-4=0
韦达定理代入得到:
(-2)*(8k^2-2)/(1+2k^2)+3*8k^2/(1+2k^2)-4
=(-16k^2+4+24k^2-8k^2-4)/(1+2k^2)=0
也就得证
e=c/a=√2/2 所以a=√2
椭圆方程是:x^2/2+y^2=1
(2)由对称性,不妨只看直线PQ在x轴上方的情形
设直线为y=k(x-2) P(x1,y1) Q(x2,y2)
联立得到:(1+2k^2)x^2-8k^2x+8k^2-1=0
由韦达定理可得:
x1+x2=8k^2/(1+2k^2)
x1x2=(8k^2-2)/(1+2k^2)
要证∠QF2A=∠PF2F1
即证tan∠QF2A=tan∠PF2F1
由图看出,即证y2/(x2-1)=y1/(1-x1)
即证k(x2-2)/(x2-1)=k(x1-2)/(1-x1)
即证(x2-2)(1-x1)-(x1-2)(x2-1)=0
即证-2x1x2+3(x1+x2)-4=0
韦达定理代入得到:
(-2)*(8k^2-2)/(1+2k^2)+3*8k^2/(1+2k^2)-4
=(-16k^2+4+24k^2-8k^2-4)/(1+2k^2)=0
也就得证
已知椭圆c1:x2/a2+y2/b2=1(a>b>0)的左右焦点分别为F1,F2,其中F2也是抛物线C2:y^2=4x的
已知椭圆C1:x2/a2+y2/b2=1的左右两焦点为F1,F2,离心率为1/2,抛物线C2:y2=4mx(m>0)与椭
已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0),左右焦点分别为F1,F2,
已知椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y^
椭圆C1:x2/a2+y2/b2=1(a>b>0)的上下焦点分别为F1、F2
已知双曲线X2/2-Y2/b2=1(b>0)的左右焦点分别为F1,F2,其中一条渐近方程为Y=X,点P
已知F1,F2分别为椭圆C1:y^/a^2+x^2/b^2=1的上下焦点,其中F1也是抛物线x^2=4y的焦点,点M是C
双曲线c1:x2/a2+y2/b2=1(a>b>0)的左准线为l,左焦点和右焦点分别为F1、F2,抛物线C2的准线l,焦
已知离心率为1/2的椭圆C1的左,右焦点分别为F1,F2,抛物线C2:y2=4mx(m>0)的焦点为F2,设椭圆C1与抛
手太快了…………在直角坐标系xOy仲,椭圆C1:x2/a2+y2/b2=1(a>b>0)的左右焦点分别为F1、F2,F2
已知椭圆C:x2/a2+y2/b2=1的左右焦点为F1 F2,离心率为e,直线l:y=ex+a与x轴y轴分别交于点A,B
已知椭圆x2/a2+y2/b2=1(a>b>0)的左右焦点分别为F1,F2,离心率e=√2/2,右准线方程为x=2 1.