如图,AG、BE交与点C,四边形ABCD、CGEF都是正方形,点M是AE中点,求证:MD=MF
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 12:41:24
如图,AG、BE交与点C,四边形ABCD、CGEF都是正方形,点M是AE中点,求证:MD=MF
延长DM到N,
使MN=MD,连接FD、FN、EN,
延长EN与DC延长线交于点H.
∵MA=ME,∠AMD=∠EMN,MD=MN,
∴△AMD≌△EMN,
∴∠DAM=∠MEN,AD=NE.
又∵正方形ABCD、CGEF,
∴CF=EF,AD=DC,∠ADC=90°,
∠CFE=∠ADC=∠FEG=∠FCG=90°.
∴DC=NE.
∵∠DAM=∠MEN,
∴AD∥EH.
∴∠H=∠ADC=90°.
∵∠G=90°,∠HIC=∠GIE,
∴∠HCI=∠IEG.
∵∠HCI+∠DCF=∠IEG+∠FEN=90°,
∴∠DCF=∠FEN.
∵FC=FE,
∴△DCF≌△NEF,
∴FD=FN
MF=MD.
使MN=MD,连接FD、FN、EN,
延长EN与DC延长线交于点H.
∵MA=ME,∠AMD=∠EMN,MD=MN,
∴△AMD≌△EMN,
∴∠DAM=∠MEN,AD=NE.
又∵正方形ABCD、CGEF,
∴CF=EF,AD=DC,∠ADC=90°,
∠CFE=∠ADC=∠FEG=∠FCG=90°.
∴DC=NE.
∵∠DAM=∠MEN,
∴AD∥EH.
∴∠H=∠ADC=90°.
∵∠G=90°,∠HIC=∠GIE,
∴∠HCI=∠IEG.
∵∠HCI+∠DCF=∠IEG+∠FEN=90°,
∴∠DCF=∠FEN.
∵FC=FE,
∴△DCF≌△NEF,
∴FD=FN
MF=MD.
如图,AG、BE交与点C,四边形ABCD、CGEF都是正方形,点M是AE中点,求证:MD=MF
四边形ABCD.CGEF都是正方形,将正方形CGEF,绕点C旋转任意角度后,连结AE,点M为AE的中点,连结DM.MF,
四边形ABCD、CGEF都是正方形.将正方形CGEF,绕点C旋转任意角度后,连接AE,点M为AE的中点,连接DM、MF,
)如图1,已知正方形ABCD和正方形CGEF(CG>BC),B,C,G在同一条直线上,M为线段AE的中点,探究MD,MF
正方形CGEF的对角线CE放在正方形ABCD的边BC延长线上,取AE中点M求证MD=MF
如图四边形ABCD和CEFG都是正方形,点B.C.E在同一直线上.点M是线段AF的中点,连接GM并延长交AD与点N.求证
如图,把正方形CGEF的对角线CE放在ABCD的边BC的延长线上,(CG>BC),取线段AE的中点M,探究:MD与MF
如图:AD,BE相交于点C,AB=AC,EC=ED;M.F.G分别是AE,BC,CD的中点.求证:AE=2MF MF=M
如图:AD,BE相交于点C,AB=AC,EC=ED;M.F.G分别是AE,BC,CD的中点. 求证:AE=2MF MF=
如图,四边形ABCD是正方形,点G是BC上任意一点,DE垂直于AG于点E,BF平行于BE,且交AG于点F.求证:AF=B
四边形ABCD是正方形,点E是边BC的中点(如图1),角AEF=90,EF与正方形外角的平分线CF交于F.求证:AE=E
如图,在矩形ABCD中,E是DC的中点,BE⊥AC交AC于点F,过点F作FG∥AB交AE于点G,求证:AG²=